
Chirp on Crickets:
Teaching Compilers Using an Embedded Robot Controller

Li Xu
Department of Computer Science
University of Massachusetts Lowell

Lowell, MA 01854 USA

xu@cs.uml.edu

Fred G. Martin
Department of Computer Science
University of Massachusetts Lowell

Lowell, MA 01854 USA

fredm@cs.uml.edu

ABSTRACT
Traditionally, the topics of compiler construction and lan-
guage processing have been taught as an elective course in
Computer Science curricula. As such, students may gradu-
ate with little understanding or experience with the useful
techniques embodied in modern compiler construction.

In this paper, we present the design of Chirp, a language
specification and compiler implementation. As a language,
Chirp is based on Java/C syntax conventions and is matched
with the stack-based virtual machine that is built into the
simple yet versatile Handy Cricket educational robot con-
troller. As a compiler, the Chirp design is a series of Java
components. These modules demonstrate key compiler con-
struction techniques including lexing, parsing, intermediate
representation, semantic analysis, error handling and code
generation.

We have designed a 6-week teaching module to be inte-
grated into an intermediate-level undergraduate program-
ming class. In the module, students will incrementally build
the Chirp compiler, culminating with code generation for the
Cricket controller. They will test their work on both phys-
ical Cricket-based robots and a web-based Cricket simula-
tor. The Chirp system and our pedagogical design provides
a realistic and engaging environment to teach compilers in
undergraduate core programming courses.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education];
D.3.4 [Programming Languages]: Compilers

General Terms
Languages, Design

Keywords
Compiler Construction, Embedded Processor, Educational
Robotics, Virtual Machine, Language Processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003 ...$5.00.

1. INTRODUCTION
Compiler construction has long been included in the com-

puter science curricula. Due to its complexity, however, the
compiler course is usually available only as an upper-level
elective class. Students often opt not to take the course,
thus missing the opportunity to acquire the knowledge and
skills embodied in a compiler class—many of which are es-
sential for understanding the concepts and inner workings
of languages and programmable systems.

This paper presents a teaching framework to integrate
the fundamentals of compiler and language processing into
an intermediate-level programming course. Based on the
Handy Cricket embedded robot controller, we developed a
C-like language dubbed Chirp. The Chirp language and com-
piler system target Cricket robots and a web-based Cricket
simulator and provide a simple, yet realistic and engaging
framework to teach compilers.

This paper makes the following contributions:

1. We present a new approach to integrate teaching com-
pilers into an intermediate-level undergraduate pro-
gramming course, so more students will benefit from
learning fundamentals in compiler design;

2. The Chirp language and its compiler are designed for
pedagogy, and give students balanced and accessible
coverage on broadly applicable compiler techniques,
including front-end, back-end and intermediate repre-
sentation in typical compiler development;

3. We present a teaching module based on the Chirp frame-
work and the supporting tools and techniques, so the
materials can be effectively taught within the context
of intermediate-level core programming course.

The rest of the paper is organized as follows: Section 2 de-
scribes the motivation of our approach. Section 3 describes
the Handy Cricket embedded robot controller and the Chirp
language. Section 4 describes the Chirp compiler design.
Section 5 highlights the tools and techniques to assist stu-
dents building the compiler. We conclude in Section 6.

2. MOTIVATION AND RELATED WORK
Compiler Construction has been included in Computer

Science curricula since the early days of computing [3, 4].
The ACM Curricula 2001 [1] lists Language Translation Sys-
tems as elective in the Programming Languages knowledge
group. The widely used compiler textbooks [5, 7] suggest
a primary teaching format of a dedicated compiler class to

82

Figure 1: The Handy Cricket Controller and Maze-
Crawling “Mini-Bot.”

cover the main materials, and a second class to teach more
advanced topics such as program analysis and optimization.
Such a format is currently used in many institutions. As
noted, this elective class approach limits the audience to a
small number of students, as the majority of students opt
not to take the class at all.

Many educators recognize the importance of teaching com-
pilers in undergraduate courses, and the need to include
more students in such a course. Debray [8] shows compiler
techniques are highly useful with a wide variety applica-
tions and advocates a generalized view in teaching compil-
ers. Henry [9] describes teaching compilers using domain
specific languages to engage students and to demonstrate
the usefulness of compilers. Nguyen et al. [14] use design
patterns to teach recursive-descent parsing in a CS2-level
OO programming course.

Although few students will likely become professional com-
piler writers, the principles and techniques introduced in
compiler class are broadly applicable. For example, com-
piler front-end has its foundation in automata, grammar and
parsing theory. Compiler design involves non-trivial use of
common data structures and algorithms. The techniques of
language processing can be used to solve many non-compiler
related problems [7, 5, 8]. Good knowledge of these topics
are essential for students to understand concepts and inner
workings of languages and language-based systems.

To allow more students to benefit from learning compil-
ers, an effective approach is to integrate compiler funda-
mentals into the core curriculum. The challenge of this ap-
proach, however, is to carefully select subjects so that stu-
dents will learn the core topics without being overwhelmed
by advanced topics. In our work, the Chirp framework is de-
veloped to give students balanced and accessible coverage on
key compiler techniques in the context of an intermediate-
level programming course.

3. HANDY CRICKET AND THE CHIRP
LANGUAGE

The Handy Cricket is an inexpensive, hand-held micro-
controller that was developed for educational applications.
It has been used by teachers and K–12 students, industrial
designers, and undergraduates [15, 11, 12]. Figure 1 shows
the Cricket controller, and the “Mini-Bot,” a small maze-
crawling robot built by a 10th grade student.

The device itself includes hardware interfaces for two DC

motors and two analog sensors, and is based on a Microchip
PIC processor running a custom, stack-based virtual ma-
chine. The Cricket’s virtual machine supports 16-bit in-
teger numerics, procedure calls (including recursion) with
arguments and a return value, looping and conditional con-
trol structures, and global variables [10]. Prior to this work,
the Cricket was programmed only in a version of Logo, with
language features tightly matched to the device’s virtual ma-
chine.

The Cricket robot controller provides a simple and real-
istic platform to teach compilers. The hardware control is
easy to understand, and the virtual machine uses a small
bytecode instruction set. Leveraging the Cricket, we de-
signed a Cricket programming language using the conven-
tional Java/C syntax, which is ideal to teach compiler im-
plementation. This new language is called Chirp.

int sum;

int i;

void main()

{

sum = 0;

i = 0;

loop (100) {

i = i+1;

sum = sum+i;

}

System.Sound.beep();

System.IR.send(sum);

}

Figure 2: Example Chirp Program and its Corre-
sponding Abstract Syntax Tree Intermediate Rep-
resentation (AST IR).

A sample Chirp program is shown on the left in Figure 2.
The program uses a loop to compute sum of 1 to 100. Then
it calls system interface functions to produce the alert beep
sound, and send the result through Cricket infrared inter-
face.

As noted, the Chirp syntax is similar to C and students
with C/C++ and Java experience can quickly learn Chirp.

83

Figure 3: Chirp Compiler Structure.

The language features of Chirp are minimal and only include
the data types and language constructs that the Cricket
robot controller supports:

• Data types. Chirp supports two basic data types: in-
teger and byte. Integer types are 16-bit numbers and
byte types are 8-bit. Boolean values are similar to C:
0 represents logical false, and any non-zero value rep-
resents true. Chirp also supports 1-dimensional arrays
of the basic types. There are no pointer or reference
types.

• Variables. Chirp has only global variables and there
are no local variables.

• Functions, arguments, and statements. Chirp
functions are similar to C functions, which can take
formal arguments, and return a result or have void re-
turn type. The function body is a sequence of Chirp
statements, including assignment, if-else statements,
unconditional loops, loops with a calculated loop count,
and function returns.

• Interfaces. To support robotic control, Chirp pro-
vides a special construct—interface. An interface ag-
gregates related I/O functions within a single names-
pace. Chirp defines built-in System interfaces, which
are directly mapped to Cricket bytecodes for motor,
sensor and other hardware controls.

• Expressions. Chirp supports arithmetic, boolean and
relational expressions.

The full language specification of Chirp is documented
in [16]. The unique features of Chirp such as interfaces serve
the example of idiosyncrasies of real languages. As Chirp has
close ties to Cricket bytecode and virtual machine, students
will explore how high-level language features are mapped
and translated to low-level primitives—the core of compil-
ers/language processor design, with the easy-to-understand
Cricket as the target.

4. BUILDING THE CHIRP COMPILER
In the following, we describe the construction of Chirp

compiler. We follow the general structure of modern com-
pilers [7]. The structure of the Chirp compiler is shown in
Figure 3.

4.1 Front-end
The front-end consists of Chirp lexer and parser. Students

will learn the basics of regular expression and grammar the-
ory and move quickly to use modern compiler tools to build
the lexer and parser for Chirp. The compiler tool we use is
ANTLR [2]. Students will write specification of Chirp tokens
and grammar rules in ANTLR grammar file and ANTLR

will generate lexer and parser classes in Java. The simplic-
ity of Chirp and high-level ANTLR specifications make the
front-end easy to understand and construct. In our refer-
ence implementation, the full spec of Chirp lexer tokens and
grammar rules takes about 80 lines. The generated Java
lexer and parser classes can then be used directly to build a
fully functional front-end.

4.2 Intermediate Representation
A key component of modern compilers is the Intermedi-

ate Representation (IR), which facilitates program analysis
and transformation [7]. The second phase of Chirp compiler
builds the IR and carries out semantic checking. We adopt
the Abstract Syntax Tree (AST) as the IR; the AST encodes
grammar constructs and is a natural representation. The
ANTLR tool can automatically construct AST tree nodes
when the parser matches a grammar rule. Each rule rep-
resenting Chirp language constructs such as assignments, if-
else conditionals, loops and expressions, is extended with
AST-building annotations (IRBuilder). Also, the ANTLR
system includes tools to easily create visualizations of the
AST data structures (Figure 2).

The Chirp compiler design highlights the central role of IR
in modern compilers: in the rest of compiler, the IRVerifier
and CodeGen perform tree walks on AST to check semantics
and generate bytecode. For example, in IRVerifier, after the
AST IR is constructed, the tree walker traverses the tree,
checking semantics of each node. During parsing, symbol
information is collected into a symbol table, such as type
information, variable and function declarations. The IRVer-
ifier tree walker looks up symbol tables and verifies correct
and consistent usage of symbols.

4.3 Back-end
After IRVerifier runs successfully, the back-end makes a

second tree walk on the AST and generates Cricket byte-
code. On the Cricket controller, user program data and
bytecode instructions are stored in 4KB EEPROM with a
linear address space. Chirp’s CodeGen tree walker takes
three steps to create the bytecode image to run on the
Cricket. In Step 1, CodeGen lays out the data for variables
and arrays. As Chirp has only global variables, all data stor-
age can be allocated statically. To do so, CodeGen iterates
over the symbol table to determine the size and address for
variables and arrays. The data storage starts from address
0 and is allocated consecutively. Once the variable is allo-
cated, the corresponding symbol table entry will be updated
with its allocated address.

After data allocation is done, CodeGen moves on to Step 2
and generates bytecode instructions for each Chirp function.
CodeGen performs a tree walk on the AST IR and gener-
ates bytecode for each statement tree node. The Cricket
VM uses postfix format for bytecode instructions in which
the operands are computed before emitting the operation
bytecode. To generate bytecode in postfix order, CodeGen
traverses the AST in postorder, generating the bytecode se-
quence for subtrees first before emitting the bytecode for the
tree node.

As variable addresses have been computed in Step 1, the
only thing that needs to be fixed after Step 2 is determining
the callee address for function calls (this must be deferred
until after the bytecode of functions are generated). So in
Step 2, for function calls, CodeGen supplies a placeholder

84

Week Topics Assignments
1 Intro to Cricket

bytecode, hardware
Cricket, and Virtual
Cricket simulator

Manually translate
simple Chirp code to
bytecode and run on
Cricket

2, 3 Lexer/parser Use ANTLR to build
lexer and parser, gen-
erate AST IR

4 IR verification Build IRVerifier tree
walker; manage sym-
bol tables

5 Code generation Build CodeGen tree
walker

6 Testing, and Robot
contest

Students use Chirp
system to program
real robots

Table 1: Teaching Schedule of Cricket/Chirp.

address (2 bytes) for the target function, and records the
bytecode and function name in a placeholder list. Then, in
Step 3, CodeGen assigns the address for each function and
revisits the placeholder list to patch in the final address for
function calls. Finally, CodeGen writes the Cricket startup
vector with the address of Chirp main function as the pro-
gram entry point.

5. INTEGRATING CHIRP INTO UNDER-
GRADUATE PROGRAMMING COURSE

We are integrating teaching the Chirp system into our sec-
ond year “Computing IV” course (a required core course).
Historically, this course has served to introduce students to
“programming in the large” (i.e., the design and implemen-
tation of a significant project), to reinforce OO concepts
and practice, and to introduce advanced development tools.
Past versions of the course have used language processing
topics including lexing and parsing. In our pedagogical de-
sign, we will use Cricket and Chirp framework to teach not
only the compiler front-end (lexing and parsing), but also in-
termediate representation and code generation—important
topics often ignored in an introductory course. The Chirp
compiler also provides a good implementation target to use
OO techniques already taught in first half of the course.

5.1 Schedule
We have designed an incremental 6-week schedule to teach

the framework. The topics and assignments for each week
are listed in Table 1.

For each assignment, students will be given partially im-
plemented Java classes and extend them, implementing more
Chirp features. For example, the lexer assignment will give
token specs for integers, and students will implement hex-
adecimal numbers. In the parser assignment, students will
be given sample rules for assignment, and implement a more
complex loop statement. In the semantic verifier assign-
ment, the given code will check variable references, and stu-
dents will extend it to arrays. In the codegen assignment,
skeleton code emits bytecode for arithmetic expressions, and
students will add support for general expressions, function
calls and statements. This skeleton code approach will help

Figure 4: The Virtual Cricket Simulator.

students navigate through the main topics of compilers with-
out being overwhelmed or distracted.

Our teaching schedule will culminate in a robot compe-
tition where students write Chirp programs to control pre-
built Cricket robots, using their compilers to create byte-
code and run the robot. This will demonstrate the power
and usefulness of compiler techniques they have learned.

5.2 Supporting Tools and Techniques
To make the materials easily accessible within the under-

graduate programming course, we have developed teaching
tools and software techniques to assist students’ learning:

• Virtual Cricket simulator with integrated Chirp
compiler. Previously, Martin et al. developed the
Virtual Cricket, which allows students to run Cricket
code in a web-based emulation of the Cricket hard-
ware. The Virtual Cricket simulates execution of byte-
code and shows the actions of motors and sensors with
a GUI interface [13].

To assist students in learning Chirp, we extended this
system with the Chirp reference compiler. The com-
bined tool can be run on any Java-enabled web browser
(Figure 4). In our design, the simulator is used in two
ways:

85

1. It provides an environment to learn Chirp. The
simulator has input window to type in Chirp pro-
gram; the built-in reference compiler will then
compile it to bytecode and run it on the sim-
ulator. This helps students learn the language
quickly and explore its features.

2. It provides a testing platform. The generated
bytecode can both run on Cricket robots and the
simulator. The simulator also prints out messages
through browser’s Java console, so students can
check how bytecode is executed during debugging.

• Compilation tracking. For students learning com-
pilers first time, they often cite lack of ability to “see”
how compiler operates internally as major difficulty in
understanding the compilation process [6].

We use several techniques to help students visualize
how a compiler works. First, the ANTLR tool gen-
erates a recursive-descent parser. In contrast to the
table driven parsers of Yacc and other tools, recursive-
descent parsing is intuitive and easier to understand [7].
ANTLR also generates textual tracing messages in the
parser to show the top-down parsing process. The
tracing option is turned on when building the Chirp
compiler. Second, the AST IR can be visualized by
the ASTFrame class in ANTLR library. Students can
easily generate diagrams of AST trees similar to Fig-
ure 2. We expect these visualization techniques will
help students to build a mental image of how the com-
piler works.

• Error handling. The use of Java and ANTLR sim-
plifies compiler error handling—an important and dif-
ficult topic in compiler design. The ANTLR lexer and
parser generates Java exceptions when there are pars-
ing errors. Syntax errors can thus be handled by defin-
ing appropriate Java exception handlers. As we use a
recursive-descent parser, the error is immediately de-
tected at the grammar rule where the parser failed to
match. This gives precise error detection and helps
students to design and debug their compilers. Seman-
tic errors in Chirp are handled during AST tree walk
by IRVerifier, which checks against symbol tables, and
verifies consistent use of variable and function types.

• OO design using design patterns. Design patterns
have become an essential element in OO programming
courses. The Chirp compiler project serves as an illumi-
nating example to teach and apply the commonly used
patterns. The IRBuilder, IRVerifier and CodeGen in
Figure 3 are implemented using the Singleton pattern
to maintain single object instance and global access.
The symbol creation is implemented as the Factory
pattern. Symbol table and AST tree management use
Java generic template classes and are accessed through
Iterators. More elaborate patterns such as Visitors can
be used in AST tree walkers.

6. CONCLUSIONS
Traditionally, compiler construction has been taught as

an elective course with limited student attendance. In this
paper, we presented an alternative approach to teach com-
piler fundamentals in an intermediate-level undergraduate
programming course.

Leveraging the Cricket embedded robot controller, we de-
signed Chirp—a simple yet realistic language for compiler
implementation. The Chirp compiler highlights the tech-
niques and tools in building modern compilers. We also de-
veloped the Chirp simulator and used compiler visualization
method to assist students learning compilers. The Cricket
and Chirp framework provides an accessible and engaging
platform to teach compiler fundamentals in the core under-
graduate curriculum, so an increased number of students can
acquire and benefit from the useful compiler techniques.

We are excited to make the materials described in this pa-
per available to other educators. The Chirp language spec-
ification, the Chirp compiler and simulator tools, and related
teaching materials are online at www.cs.uml.edu/∼xu/chirp.
The Handy Cricket hardware is available at handyboard.com/
cricket.

7. REFERENCES
[1] ACM Computing Curricula 2001, Computer Science volume.

http://www.sigcse.org/cc2001/.

[2] ANTLR documentation. http://www.antlr.org/doc.

[3] Curriculum ’68: Recommendations for the undergraduate
program in computer science. Communications of the ACM,
pages 151–197, Mar. 1968.

[4] Curriculum ’78: Recommendations for the undergraduate
program in computer science. Communications of the ACM,
pages 147–166, Mar. 1979.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[6] K. Andrews, R. R. Henry, and W. K. Yamamoto. Design and
implementation of the uw illustrated compiler. In Proceedings
of 1988 conference on Programming Language design and
Implementation.

[7] K. D. Cooper and L. Torczon. Engineering a Compiler.
Morgan Kaufmann, 2003.

[8] S. Debray. Making compiler design relevant for students who
will (most likely) never design a compiler. In Proceedings of
2002 SIGCSE technical symposium on Computer science
education, pages 341–345.

[9] T. R. Henry. Teaching compiler construction using a domain
specific language. In Proceedings of 2005 SIGCSE technical
symposium on Computer science education, pages 7–11.

[10] F. Martin, B. Mikhak, M. Resnick, B. Silverman, and R. Berg.
To mindstorms and beyond: Evolution of a construction kit for
magical machines. In A. Druin and J. Hendler, editors, Robots
for Kids: Exploring New Technologies for Learning, pages
9–33. Morgan Kaufmann, 2000.

[11] F. Martin, B. Mikhak, and B. Silverman. Metacricket: A
designer’s kit for making computational devices. IBM Systems
Journal, 39(3 & 4), 2000.

[12] F. G. Martin and S. Kuhn. Computing in context: Integrating
an embedded computing project into a course on ethical and
societal issues. in press, 2006.

[13] F. G. Martin, N. Palmer, and B. Skinner. The virtual cricket:
A web-based simulator for learning robot programming. In
preparation.

[14] D. Z. Nguyen, M. Ricken, and S. Wong. Design patterns for
parsing. In Proceedings of 2005 SIGCSE technical symposium
on Computer science education.

[15] M. Resnick, R. Berg, and M. Eisenberg. Beyond black boxes:
Bringing transparency and aesthetics back to scientific
investigation. Journal of the Learning Sciences, 9(1):7–30,
2000.

[16] L. Xu and F. Martin. The chirp language specification.
Technical Report TR-2005-003, Dept. of Computer Science,
UMass Lowell.

86

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

