How to Show Non-Recursive-Enumerability?
Written and copyright by Jie Wang

Diagonalization and reduction are two common techniques used to show that a given set is not r.e. These techniques are also commonly used to show that a given set is not recursive (i.e., not decidable). To illustrate how to use these two techniques, we consider a set \(\text{Tot} \) defined as follows:

\[
\text{Tot} = \{ \langle M \rangle \mid M \text{ is a Turing Machine and } M \text{ halts on any binary string} \},
\]

where \(\langle M \rangle \) represents a fixed binary encoding of \(M \)'s description and \(\{0,1\} \) is \(M \)'s input alphabet.

We can show that \(\text{Tot} \) is not r.e., nor is \(\overline{\text{Tot}} \). We first use diagonalization to show that \(\text{Tot} \) is not r.e. We will use the following fact:

Proposition 1 If \(L \) is r.e., then there is a recursive function \(f \) such that \(L = \text{range}(f) \).

Proof. Since \(L \) is r.e., there is a 2-tape Turing enumerator \(M \) that prints all the elements in \(L \) one at a time on its output tape. We construct a 4-tape Turing machine \(M_f \) with one input-tape, two work tapes, and one output tape as follows: On any input \(x \in \{0,1\}^* \) on its input tape, use the two work tapes to simulate \(M \). Whenever an output \(y \) is printed on \(M \)'s output take, check \(M_f \)'s input tape. It its content becomes \(\epsilon \), output \(y \) on \(M_f \)'s output tape and halt. Otherwise, decrease the content of \(M_f \)'s input tape by 1 in the lexicographical order and continue the simulation of \(M \).

Clearly, \(M_f \) computes a function and it always halts on any input. Thus, \(M_f \) computes a recursive function and we denote this function by \(f \). From the construction, we note that \(f(x) \) is an element in \(L \) and for any element \(y \in L \), there must be an \(x \) such that \(f(x) = y \). Thus, \(L = \text{range}(f) \).

Proposition 2 \(\text{Tot} \) is not r.e.

Proof. Suppose for the sake of contradiction that \(\text{Tot} \) is r.e. It follows from Proposition 1 that there is a recursive function \(g \) such that \(\text{Tot} = \text{range}(g) \). This means that for any given binary string \(x \), \(g(x) \) gives a binary encoding of a Turing machine that halts on any
binary string input y (including on input x itself). Denote this Turing machine by $M_{g(x)}$. We construct using diagonalization a recursive function f as follows:

$$f(x) = \begin{cases} 0, & \text{if } M_{g(x)}(x) > 0 \\ 1, & \text{if } M_{g(x)}(x) = 0 \end{cases}$$

The function f is recursive because it is total. It follows from the construction that $f(x) \neq M_{g(x)}(x)$ for any x.

Let M_f be a Turing machine that computes f. Thus, M_f halts on any input. This implies that $\langle M_f \rangle \in \text{Tot}$ and so there must be an x such that $g(x) = \langle M_f \rangle$. This means that $M_{g(x)}(x) = M_f(x) = f(x)$, a contradiction. Thus, the assumption that Tot is r.e. is incorrect. This completes the proof.

We now show that $\overline{\text{Tot}}$ is not r.e. using reduction. Recall that the following Turing machine halting problem

$$H = \{ \langle M, x \rangle \mid M \text{ is a Turing machine and } M \text{ on input } x \text{ halts} \}$$

is r.e. but not recursive. That is, \overline{H} is not r.e. Also recall that if $A \leq_m B$ and A is not r.e., then neither is B. Thus, it suffices to show that $\overline{H} \leq_m \overline{\text{Tot}}$, which is equivalent to showing that $H \leq_m \text{Tot}$. This is exactly the same proof of the first part in the proof of Rice’s theorem (see my handout on Rice’s theorem).