5.4 – Undecidable Problems

- Halting Problems (revisit)
- Reductions
- Problems on r.e. sets w/ non-trivial properties: Rice’s Theorem

Universal Turing Machine
Encoding of TM’s: <M>

Halting Problem:

\[K = \{ <M> | M \text{ is a TM and } M \text{ halts on the input } <M> \} \]
(K is denoted by \(H_0 \) in the textbook)

Theorem: K is undecidable, but K is Turing acceptable.

Let \(HALT = \{ <M><x> | M \text{ is a TM and } M \text{ halts on the input } x \} \)

- We could also use \(<M,x>\) to denote \(<M><x>\).
- We also use \(H \) to denote \(HALT \).

We’ll show that \(H \) is undecidable. We’re going to use “reduction” to prove this result.

Reduction:

Suppose we have two languages A and B. If there is a Turing-computable function \(f \) (i.e., \(f \) can be computed by a TM \(M \) on all inputs & \(M \) always halts) such that \(\forall x : x \in A \iff f(x) \in B \), then we say that A is reducible to B, written as \(A \leq_m B \)

Proposition 1: If \(A \leq_m B \) and B is decidable, then A is decidable.

Proof: Assume that \(A \leq_m B \) via a reduction \(f \), then we know that \(f \) is Turing-computable, and \(\forall x : x \in A \iff f(x) \in B \). If B is decidable, then \(\exists \) a DTM \(M_B \) that decides B.

i.e., \(M_B \) on any input always halts and
- If $x \in B$, then M_B accepts x
- If $x \not\in B$, then M_B rejects x

Let M_f be a TM that computes f. Construct a DTM M_A to decide A as follows:

$$f(x) = M_B(M_f(x))$$

This means on any input x, M_A first simulates M_f on x. Then, M_A simulates M_B on the output $f(x)$ of M_f on x.

- Since M_f on any input x always halts, and M_B on any input always halts, we know that M_A on any input will always halt.

- Since M_B has two halting states, h_a and h_r, M_A will also have two halting states.

Now $\forall x$, if $x \in A$, then $f(x) \in B$. Hence, M_B accepts $f(x)$.

- Since $M_f(x) = f(x)$, we have: if $x \in A$, then M_B accepts $M_f(x)$

This means that M_A accepts x. Similarly, if $x \not\in A$, then $f(x) \not\in B$. Hence, M_B rejects $f(x)$. This means that M_A rejects x. Thus, M_A decides A, so A is decidable. \textbf{End of proof.}

\textit{Corollary.} If $A \leq_m B$ and A is not decidable, then B is not decidable.

Now we’re ready to show that:

$$H = \{ <M><x> | M \text{ is a TM & halts on } x \}$$

is not decidable by reducing H_0 to H.

We can construct this reduction as follows:

On any instance $<M>$ of H_0, define $f(<M>) = <M><M>$

Then it’s easy to see that f is Turing-computable (a machine that duplicates its input).

And we have:

$$\forall <M>: <M> \in H_0 \iff M \text{ is a TM } \& M \text{ halts on } <M>$$

$$\iff <M><M> \in H$$

$$\iff f(<M>) \in H$$

Hence, we know that $H_0 \leq_m H$. Thus, H is not decidable. \textbf{End of proof.}
Proposition 2: If $A \leq_m B$ and B is Turing-acceptable, then A is Turing-acceptable.

Proof: Since $A \leq_m B$, there is a Turing-computable reduction f, s.t. $\forall x : x \in A \iff f(x) \in B$. Let M_f be a DTM that computes f. This means that on any input x, M_f always halts and produces $f(x)$ as its output.

Assume that B is Turing-acceptable. Then, there is a DTM M_B, s.t. $B = L(M_B)$. This means that for all input x, if $x \in B$, then M_B on x halts, and $x \notin B$, then M_B on x never halts.

Now we construct an acceptor for A as follows:

$$M_A(x) = M_B(M_f(x))$$

On any input x, if $x \in A$, then $f(x) \in B$. Hence, M_B on the input $f(x)$ halts. Since $f(x) = M_f(x)$, M_B halts on $M_f(x)$. Thus, if $x \in A$, then M_A on x halts. On the other hand, if $x \notin A$, then $f(x) \notin B$. Hence, M_B on the input $f(x)$ never halts. This implies that M_A on x never halts. Thus, M_A is indeed an acceptor for A. So A is Turing-acceptable. **End of proof.**

Corollary: If $A \leq_m B$ and A is not recursively enumerable (same as Turing-acceptable), then B is not recursively enumerable.

- This means that we have a way to show that a language is not Turing-acceptable.

For instance, we know that \overline{H} is not Turing-acceptable (since H is Turing-acceptable, but is not decidable).

If we can reduce \overline{H} to a language L, then L is not Turing-acceptable.

Proposition 3: $A \leq_m B$ iff $\overline{A} \leq_m \overline{B}$. (**Proof by Def.**)

Example:

Let $L = \{<M_1><M_2> | M_1$ and M_2 are TM’s and $L(M_1) \neq L(M_2)$

Then L is not Turing-acceptable.

Proof: Reduce H to \overline{L} as follows:
Construct a reduction \(f \), s.t. on instance (input) of \(H \langle M \rangle \langle x \rangle \), \(f \) outputs two TM’s \(M_1 \) and \(M_2 \),

where \(M_1 \) accepts everything:

\[
\text{i.e., } L(M_1) = \sum^* ,
\]

and \(M_2 \) on input \(w \), will simulate \(M \) on \(x \). If \(M \) halts on \(x \), then \(M_2 \) halts on \(w \):

\[
\text{i.e., if } M \text{ on } x \text{ halts, then } L(M_2) = \sum^* .
\]

This means that \(f(\langle M \rangle \langle x \rangle) = \langle M_1 \rangle \langle M_2 \rangle \) and

\[
\langle M \rangle \langle x \rangle \in H \iff L(M_1) = \sum^* \text{ and } L(M_2) = \sum^* \\
\iff \langle M_1 \rangle \langle M_2 \rangle \in \overline{L}
\]

Hence, \(H \leq_m \overline{L} \). Hence, \(\overline{H} \leq_m L \).

This implies that \(L \) is not Turing-acceptable. \(\text{(End Example)} \)

Problems on r.e. sets w/ non-trivial properties: Rice’s Theorem:

We’ll call a set of r.e. sets a property. E.g.,

Non-Trivial Properties:

\(\{ \emptyset \} \) is the property of r.e. sets “being empty”

\(\{ \sum^* \} \) is the property of “being full”

\{regular languages\} is the property of “being regular”

For any given property \(P \), we consider languages

\[
L_P = \{ \langle M \rangle \mid M \text{ is a TM } \& L(M) \in P \}
\]

E.g.,

\[
E = \{ \langle M \rangle \mid M \text{ is a TM } \& L(M) = \emptyset \} \\
F = \{ \langle M \rangle \mid M \text{ is a TM } \& L(M) = \sum^* \} \\
R = \{ \langle M \rangle \mid M \text{ is a TM } \& L(M) \text{ is regular} \}
\]

- All of these languages are not decidable.

Say a property \(P \) is trivial if \(P = \emptyset \) or \(P \) contains all r.e. sets.

Rice’s Theorem: For any non-trivial property \(P \), \(L_P \) is not decidable.

- As a direct application of Rice’s Theorem, we know that \(E, F, R \) are not decidable.