Decidability and Semidecidability

Universal Turing Machines and the Halting Problem

Decidability and Semidecidability

A language L is said to be decidable if there exists a DTM M such that M has 2 halting states: H_a (accepting state) and H_r (rejecting state), and on any input x, M always halts, such that if $x \in L$, M accepts x (i.e., M on input x reaches the halting state H_a) and if x is not in L, then M rejects x (i.e., M on input x reaches the halting state H_r).

- This means we have an algorithm to solve the membership problem for L iff L is decidable.
- The membership problem for L is to determine whether a given x is in L or not.

Proposition:
L is decidable iff L and L' are both Turing-Acceptable.

Proof:

\Rightarrow
Assume L is decidable. Then, by definition there exists a DTM M with 2 halting states and on any input x, M always halts such that $x \in L$ iff M accepts x.

We construct 2 TMs, M_1 and M_2 such that both M_1 and M_2 on input x will simulate M on x. If M on x reaches the accepting halting state H_a, then M_1 on x halts, but M_2 on x goes to an infinite loop. Otherwise, M_1 on x goes to an infinite loop and M_2 on x halts.

Hence, $L = \{x | M_1 \text{ on } x \text{ halts}\}$
$L' = \{x | M_2 \text{ on } x \text{ halts}\}$

Thus, L and L' are both Turing-Acceptable.

\Leftarrow
Assume L and L' are Turing-Acceptable. Then, by definition there exists DTM M_1 and M_2 such that
$L = \{x | M_1 \text{ halts on } x\}$
$L' = \{x | M_2 \text{ halts on } x\}$
Now we construct a new DTM M such that on any input x, M simulates M_1 on x and M_2 on x one step at a time, in a round-robin fashion (i.e., run M_1 on x for one step, then run M_2 on x for one step, then run M_1 on x for another step, then run M_2 on x for another step, etc.) This technique is called “time slicing” in Operating Systems, and “dove tailing” in recursion theory.

By assumption one of the computations of M_1 on x and M_2 on x will halt. If M_1 on x halts, then let M halt at the halting state H_a. If M_2 on x halts, then let M halt on the halting state H_r. Hence, L is decidable.

However not all Turing-Acceptable languages are decidable. In other words, there are languages L such that L is Turing-Acceptable but L' is not Turing-Acceptable. Such languages are called Semidecidable.

If a language is Turing-Acceptable, it’s also called recursively enumerable (r.e).

What this means is that we can enumerate all the elements in L one by one by a special TM M that takes no input, runs forever, and prints all the elements in L on its output tape.

The reason why this is true is the following:

Assume that L is Turing-Acceptable. Then there exists a DTM M_L such that $L = \{x | M_L \text{ on } x \text{ halts}\}$. Construct a DTM M which takes no input and does the following:

$n = 0$

Stage N: Lexicographically generates the 1^{st} n strings over the alphabet of L: s_0, s_1, s_2, ..., s_{n-1}.

For each string s_i, M simulates M_L on input s_i for n steps. If M_L on s_i halts, then this means that $s_i \in L$, and M prints s_i on its output tape.

Set $n = n+1$, and repeat.

Since if $x \in L$, then M_L on x will halt, x will be printed by M at some stage N.

We observe that the machine M we constructed actually prints every $x \in L$ infinitely many times. We can modify M so that M will print each $x \in L$ exactly once (Homework problem).
Universal Turing Machine
And
The Halting Problem

TM’s we’ve seen so far only perform a specific task. Look at the computers we have. We know that they can perform many different tasks. These computers take programs as inputs. This motivates us to look at Universal TM’s which take a pair \(<m, x>\) as input, where \(m\) is a TM and \(x\) is an input of \(m\), and simulates \(m\) on \(x\).

Every alphabet can be encoded using a binary alphabet. One common encoding scheme is ASCII.

Halting Problem: M on an Universal TM.

Q: On input \(<m, x>\), does \(M\) on \(x\) halt?
A: This problem is not decidable.

We first look at an easier halting problem:
\(K = \{<m>| M\text{ on input }<m>\text{ halts}\}\)

Theorem
\(K\) is Turing-Acceptable but \(K\) is not decidable.

The reason why \(K\) is Turing-Acceptable is that we can construct a TM \(M_k\) such that \(M_k\) on input \(<m>\) simulates \(M_k\) on \(<m_k>\).
\(M_k\) halts if \(M_k\) on \(<m>\) halts, thus:
\(K = \{<m>| M_k\text{ halts on }<m>\}\).
In other words \(K\) is accepted by \(M_k\).

To see why \(K\) is not decidable, it suffices to show that \(K'\) is not Turing-Acceptable.

Assume that \(k'\) is Turing-Acceptable (proof by contradiction), then there exists TM \(M_0\) such that \(K'\) is accepted by \(M_0\) (i.e., \(K' = \{x | M_0\text{ on }x\text{ halts}\}\)).

Now let’s look at a particular string \(x=<m_0>\). Then we have \(<m_0> \in K'\) iff \(M_0\) on \(<m_0>\) halts iff \(<m_0> \in K\).
This is a contradiction: Hence our assumption is wrong (i.e., \(K'\) is not Turing-Acceptable).