Chapter 4 – Turing Machines

Goal: To study computability of functions and languages.

Mechanism: Turing Machines

Definition: A Deterministic Turing Machine (DTM)

\[M = (S, \sum, \delta, s, H) \]
where
- \(S \) is a finite set of states.
- \(\sum \) is a tape alphabet which includes D, U in addition to symbols used to describe the problem
- \(s \) is the start state
- \(H \subseteq S \) is the set of halting states.
- \(\delta : (S - H) \times \sum \rightarrow S \times (\sum \cup \{-, -, \}) \)
(When halting state is reached, you’re done!)
(Reading a symbol or writing a symbol)

Configuration:

A configuration is used to describe the tape content, the head location and the state of a particular moment. Hence, sometimes the configuration is also called Instantaneous description (ID). This means that we can use the following notation to capture the configuration:
(q, uav) - uav is the tape content
- a is the head location
- q is the state

We’ll specify the initial configuration as follows:
Initial:

Next Configuration:
Case 1

Suppose $\delta(p, a) = (q, b)$, then the next configuration is $(q, u \, b \, v)$, written as $(p, u \, a \, v) \vdash (q, u \, b \, v)$

Case 2

Suppose c (not writing, only moving head)
Then the next configuration is $(q, u' c \, a \, v)$, where $u = u' c$, c is a tape symbol.

Suppose $\delta(p, a) = (q, \rightarrow)$, then the next configuration is $(q, u \, a \, c \, v')$,
Where $cv' = \delta$

A computation path is a sequence of configurations
$\sigma_1, \sigma_2, \ldots, \sigma_k$ such that $\sigma_1 \vdash \sigma_2 \vdash \sigma_3 \vdash \ldots \vdash \sigma_{k-1} \vdash \sigma_k$
We often write it as $\sigma_1 \vdash^* \sigma_k$ (similar to debugging)

Let x be a string over $\sum_0 = \sum - \{ \!, \, U \}$

If $(s, \triangleright \, a \, x') \vdash^* (h, \triangleright \, u \, c \, v)$ for some u, c, v
where $x = ax'$, a is a symbol. Then we can say that x is accepted by M, and ucv is the output of the machine M on input x.
Let \(L(M) = \{ x \mid (s, \triangleright a x') \vdash^* (h u \triangleright v), x = ax' \} \)
We say that \(L(M) \) is the language accepted by \(M \). Let \(f \) be a function and \(\text{dom}(f) \subseteq \sum^* \).
If \(M \) is a DTM such that on any input \(x \subseteq \text{dom}(f) \), there is \(u, c, v \) such that \((s, \triangleright a x') \vdash^* (h, \triangleright u c v) \) and \(f(x) = ucv \), then we say that \(M \) completes \(f \) (or \(f \) is computable).

Example 4.1.3 (Text - Page 129)

Construct a turing machine (TM) \(M \) that computes function \(f(w) = w \# w \), \(w \in \sum_0^* \# \notin \sum \)

![Diagram](image1)

Use a state to memorize the current symbol.

Technique: Sweeping

(\textit{Go back and forth until we find what we want to read})

\(\Sigma_0 = \sum_0 U \sum_{o_2} \)

\(\Sigma = \sum_0 U \{ \triangleright, W \} \) for tape symbols.

Stage 1:

Assume the leftmost symbol of \(w \) is \(a \). Replace \('a' \) with \('A \notin \Sigma' \).

Then go to a new state \(q_a \). Keep moving to the right until a blank is read. When a blank is read, replace it with \# . Move to the right. Replace that blank with \('a' \).

Stage 2:

Change state to \(q_< \). Keep moving to the left while the symbol on tape is not \(A \) or \(B \). (it stops when \(A \) or \(B \) is read).

Change state to \(q_> \). Move to the right. Assume the tape symbol is \(b \) or \(a \).
Change state to q'_b. Then replace b with B, and keep moving to the right until U is read.
Replace that blank with b.
Go back to stage 2.
Repeat until no more original symbols on the left side of $#$ are on the tape.

Stage 3:

One sweep to the left and replace every B with b, A with a. When \triangleright is read, halt!