91.404 Announcements
(as of 20 February, 2015)

- Instructor: Assoc. Prof. Karen Daniels
 o Office: OS 216
 o Email: kdaniels@cs.uml.edu
 o Office hours: T, R: 11:00 am – 12:00.
- Our TA is Xu Ye:
 o Will grade your homework assignments and help grade exams.
 o Email address is Xu_Ye@student.uml.edu
 o Office hour is Mondays 3:00 – 4:00 p.m. in OS 212A.
- Due to snow storms, T 1/27, R 1/29, T 2/3 and R 2/10 classes were canceled.
 o A revised syllabus, including some Friday lecture-capture lectures (2:30-3:30 pm in OS 503), will be posted on the web today.
 o Fridays: 2/27, 3/6, 3/27, 4/3, 4/10
- Homework is reduced.
- Reviews for exams will take place in class so everyone can attend.
- Please read Chapter 4 in our textbook.
- HW#1 has been graded and solutions were emailed.
 o In problem #5, the summation should not have an infinite upper bound. The bound should be finite: \(\log_3 n \).
- HW#2 is on our class web site and is due Tuesday 2/24 (note change).
 o Please be sure to attach signed honor statement.
- HW#3 is on our class web site:
 o It is due 3/3.
- MIDTERM EXAM: Thursday, 3/12, in class.
 o Closed textbook, one double-sided note sheet
 o Chapter coverage will be adjusted
 o Review in class 3/10.
- FINAL EXAM has been scheduled: Tuesday, 5/5, 8:00 am – 11:00 am.
- Some of our lecture slides are courtesy of Prof. Pecelli. A link to these slides is now provided on our course’s web site (via both Lectures and Related Links).
- Additional Cormen et al. textbook lectures from an excellent professor at MIT:
 o erikdemaine.org/classes/ (6.006 Introduction to Algorithms)
 o This link is now on our course web site.
- Help with course material can be provided by Prof. Daniels and/or our TA or grader. Help is also available from the campus Learning Center. For help with math background, please consider seeking help from the Math department.
- In general, when describing an algorithm please include the following:
 o Pseudocode following the textbook’s conventions
 o Correctness justification:
 o “Mechanical” correctness (e.g. recursion base case, finite loops, staying within array bounds)
 o “As-advertised” correctness (e.g. pseudocode puts numbers into nondecreasing order so that it correctly sorts the numbers)
 o Asymptotic analysis
 o Execution time and/or storage space
- In general, we will assemble homework solutions based on the best correct solutions provided by class students. If no one obtains a correct solution, then our grader and Prof. Daniels will supply one. If you would not like any of your correct solutions to be shared with the class, please contact Prof. Daniels and we will respect your preference.
- Please keep a copy of each homework assignment that you submit.
- Students are reminded of the course policy on academic honesty. Homework should be your own work unless otherwise authorized. For homework hints, see Prof. Daniels or our TA. These hints may be shared with the class via our web site. Acknowledge in writing any hints that you have received. An honor statement must be signed and submitted with each homework assignment. An electronic copy of the honor statement is on the homework part of the course web site. Students are reminded that it is not acceptable to use web solutions in your homework. See Prof. Daniels if you have any questions about our honor policy.