91.503 (Section 201) Announcements

Current as of March 5, 2009

- **Students are reminded of the course policy on academic honesty. Homework should be your own work unless otherwise authorized. An honor statement must be signed and submitted with each homework assignment. An electronic copy of the honor statement is on the homework part of the course web site.**

- **TA:** Anwar Saipulla, asaipull@cs.uml.edu. Office hour: Friday 1:30-2:30. Anwar will be grading your homework assignments.

- In general, we will put together homework solutions to share with the class, using excellent solutions submitted by students. If we select your solution, we will label it with your name. If you prefer not to have your solutions shared with the class, please notify Prof. Daniels.

- Students are encouraged to keep a copy of their homework before submitting it.

- If your handwriting is not easily legible, then please type your homework. Our TA will deduct points if he cannot adequately read your handwriting.

- Homework #2 has been graded and solutions are available. The average was approximately 64 (excluding students who did not submit homework).

- **Homework #3 has been graded and solutions are available. Please either stop by OS 216 or send email requesting an electronic copy of solutions.**

- Students are reminded that it is not acceptable to use web solutions in your homework.

- **Homework #4 is now posted on our course's web site. It is due on 3/10.**
 - **Hint for Problem 24-1 (b) [extra credit] on p. 614:** Please think about the number of times that a shortest path can change direction (i.e. jump from \(G_f \) to \(G_b \) or vice versa). Also think about how much work is required to propagate a change in distance estimate along a part of a shortest path in which the direction does not change.

- **The midterm exam will be on 3/10 in class. It will be a 3-hour open book test.**

- Reading on shortest path graph algorithms from Chapters 24-25:
 - Chapter 24: Sections 24.1 (Bellman-Ford), 24.3 (Dijkstra), 24.5 (shortest-paths properties)
 - Chapter 25: Sections 25.1 (shortest paths and matrix multiplication) and 25.2 (Floyd-Warshall)

- **The final exam will be on Tuesday evening, 5/19 at 6:00 in our normal classroom. It will be a 3-hour open book test.**

- In the paper “On calculating connected dominating set for efficient routing in ad hoc wireless networks”, there is a typographical error in the statement of Theorem 2 on p. 9 of the paper. The reduced graph should be described as \(G' = G[V'] \) instead of \(G' = G - V' \).

- Reading on Flow Networks in Chapter 26:
 - Section 26.1: Flow Networks
 - Section 26.2: Ford-Fulkerson Method
 - Section 26.3: Maximum Bipartite Matching
 - (* sections are not part of the reading assignment)