Chapter 4 Lecture Notes (Section 4.1: Decidable Languages)

David Martin
dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall2012
Back to Σ_1

- The fact that Σ_1 is not closed under complement means that there exists some language L that is not recognizable by any TM.

- By Church-Turing thesis this means that *no imaginable finite computer, even with infinite memory, could recognize this language $L!*
A non-Σ_1 language

Each point is a language in this Venn diagram
Strategy

- **Goal**: Explore limits of algorithmic solvability.
- We’ll show (later in Section 4.2) that there are more (a lot more) languages in ALL than there are in Σ_1
 - Namely, that Σ_1 is countable but ALL isn’t countable
 - Which implies that $\Sigma_1 \neq$ ALL
 - Which implies that there exists some L that is not in Σ_1
Overview of Section 4.1

- **Decidable Languages** (in Σ_0): to foster later appreciation of undecidable languages
 - Regular Languages
 - A_{DFA}: Acceptance problem for DFAs
 - A_{NFA}: Acceptance problem for NFAs
 - A_{REX}: Acceptance problem for Regular Expressions
 - E_{DFA}: Emptiness testing for DFAs
 - EQ_{DFA}: 2 DFAs recognizing the same language
 - Context-Free Languages (see next slide)...
Overview of Section 4.1 (cont.)

- **Decidable Languages** *(in Σ_0)*: to foster later appreciation of undecidable languages

 - **Context-Free Languages**
 - A_{CFG}: Does a given CFG generate a given string?
 - E_{CFG}: Is the language of a given CFG empty?
 - Every CFL is decidable by a Turing machine.
Overview of Section 4.1

- *Decidable Languages* (*in* \(\Sigma_0 \)): to foster later appreciation of undecidable languages
- Regular Languages
 - \(A_{DFA} \): *Acceptance problem for DFAs*
 - Acceptance problem for NFAs
 - Acceptance problem for Regular Expressions
 - Emptiness testing for DFAs
 - 2 DFAs recognizing the same language
Decidable Problems for Regular Languages: DFAs

- **Acceptance problem for DFAs**

 \[A_{\text{DFA}} = \{ < B, w > \mid B \text{ is a DFA that accepts a given string } w \} \]

 - Language includes encodings of all DFAs and strings they accept.
 - Showing language is decidable is same as showing the computational problem is decidable.

- **Theorem 4.1**: \(A_{\text{DFA}} \) is a decidable language.

 - **Proof Idea**: Specify a TM \(M \) that decides \(A_{\text{DFA}} \).

 \(M = \) “On input \(<B,w> \), where \(B \) is a DFA and \(w \) is a string (implicit legal encoding check too):

 1. Simulate \(B \) on input \(w \).
 2. If simulation ends in accept state, accept. If it ends in nonaccepting state, reject.”

 Implementation details??
Overview of Section 4.1

- *Decidable Languages* (in Σ_0): to foster later appreciation of undecidable languages
 - Regular Languages
 - Acceptance problem for DFAs
 - A_{NFA}: *Acceptance problem for NFAs*
 - Acceptance problem for Regular Expressions
 - Emptiness testing for DFAs
 - 2 DFAs recognizing the same language
Decidable Problems for Regular Languages: NFAs

- **Acceptance problem for NFAs**

 \[A_{\text{NFA}} = \{ <B, w> | B \text{ is an NFA that accepts a given string } w \} \]

- **Theorem 4.2**: \(A_{\text{NFA}} \) is a decidable language.

 - **Proof Idea**: Specify a TM \(N \) that decides \(A_{\text{NFA}} \).

 - \(N \) = “On input \(<B, w> \), where \(B \) is an NFA and \(w \) is a string:
 1. Convert NFA \(B \) to equivalent DFA \(C \) using Theorem 1.39.
 2. Run TM \(M \) from Theorem 4.1 on input \(<C, w> \).
 3. If \(M \) accepts, accept. Otherwise, reject.”

 \(N \) uses \(M \) as a “ subroutine.”

Alternatively, could we have modified proof of Theorem 4.1 to accommodate NFAs?
Overview of Section 4.1

- Decidable Languages (in Σ_0): to foster later appreciation of undecidable languages
 - Regular Languages
 - Acceptance problem for DFAs
 - Acceptance problem for NFAs
 - A_{REX}: Acceptance problem for Regular Expressions
 - Emptiness testing for DFAs
 - 2 DFAs recognizing the same language
Decidable Problems for Regular Languages: Regular Expressions

- **Acceptance problem for Regular Expressions**

 $A_{REX} = \{ <R, w> | R \text{ is a regular expression that generates string } w \}$

- **Theorem 4.3**: A_{REX} is a decidable language.

 Proof Idea: Specify a TM P that decides A_{REX}.

 $P = “On input <R,w>, where R is a regular expression and w is a string:

 1. Convert regular expression R to equivalent NFA A using Theorem 1.54.
 2. Run TM N from Theorem 4.2 on input $<A,w>$.
 3. If N accepts, accept. If N rejects, reject.”
Overview of Section 4.1

- **Decidable Languages (in Σ_0):** to foster later appreciation of undecidable languages
 - Regular Languages
 - Acceptance problem for DFAs
 - Acceptance problem for NFAs
 - Acceptance problem for Regular Expressions
 - E_{DFA}: **Emptiness testing for DFAs**
 - 2 DFAs recognizing the same language
Decidable Problems for Regular Languages: DFAs

- **Emptiness problem for DFAs**
 \[E_{DFA} = \{ <A> | A \text{ is a DFA and } L(A) = \emptyset \} \]

- **Theorem 4.4**: \(E_{DFA} \) is a decidable language.

 Proof Idea: Specify a TM \(T \) that decides \(E_{DFA} \).

 \(T = \) “On input \(<A> \), where \(A \) is a DFA:

 1. Mark start state of \(A \).
 2. Repeat until no new states are marked:
 3. Mark any state that has a transition coming into it from any state that is already marked.
 4. If no accept state is marked, *accept*; otherwise, *reject*.”

Example (board work)
Overview of Section 4.1

- Decidable Languages (in Σ_0): to foster later appreciation of undecidable languages
 - Regular Languages
 - Acceptance problem for DFAs
 - Acceptance problem for NFAs
 - Acceptance problem for Regular Expressions
 - Emptiness testing for DFAs
 - \mathbf{EQ}_{DFA}: 2 DFAs recognizing the same language
Decidable Problems for Regular Languages: DFAs

- 2 DFAs recognizing the same language
 \[EQ_{DFA} = \{ <A, B> | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \]

- Theorem 4.5: \(EQ_{DFA} \) is a decidable language.

 symmetric difference:
 \[
 L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))
 \]

 Recall regular languages are closed under complement, intersection, union.

 emptiness:
 \[L(C) = \emptyset \iff L(A) = L(B) \]

Source: Sipser Textbook

F = “On input \(\langle A, B \rangle \), where \(A \) and \(B \) are DFAs:

1. Construct DFA \(C \) as described.
2. Run TM \(T \) from Theorem 4.4 on input \(\langle C \rangle \).
3. If \(T \) accepts, accept. If \(T \) rejects, reject.”

Figure 4.6
The symmetric difference of \(L(A) \) and \(L(B) \)
Overview of Section 4.1

- Decidable Languages (in Σ_0): to foster later appreciation of undecidable languages
 - Context-Free Languages
 - A_{CFG}: Does a given CFG generate a given string?
 - Is the language of a given CFG empty?
 - Every CFL is decidable by a Turing machine.
Decidable Problems for Context-Free Languages: CFGs

- **Does a given CFG generate a given string?**
 \[A_{\text{CFG}} = \{ < G, w > | G \text{ is a CFG that generates string } w \} \]

- **Theorem 4.7**: \(A_{\text{CFG}} \) is a decidable language.
 - Why is this unproductive: use \(G \) to go through all derivations to determine if any yields \(w \)?
 - Better Idea... **Proof Idea**: Specify a TM \(S \) that decides \(A_{\text{CFG}} \).
 - \(S = \) “On input \(< G, w > \), where \(G \) is a CFG and \(w \) is a string:
 1. Convert \(G \) to equivalent Chomsky normal form grammar.
 2. List all derivations with \(2n-1 \) steps (**why?**), where \(n = \) length of \(w \). (Except if \(n=0 \), only list derivations with 1 step.)
 3. If any of these derivations yield \(w \), *accept*; otherwise, *reject*.”
Overview of Section 4.1

- **Decidable Languages (in \(\Sigma_0 \)):** To foster later appreciation of undecidable languages

 - **Context-Free Languages**
 - Does a given CFG generate a given string?
 - \(E_{\text{CFG}}: \text{Is the language of a given CFG empty?} \)
 - Every CFL is decidable by a Turing machine.
Decidable Problems for Context-Free Languages: CFGs

- **Is the language of a given CFG empty?**

 \[E_{\text{CFG}} = \{ < G > | G \text{ is a CFG and } L(G) = \emptyset \} \]

- **Theorem 4.8**: \(E_{\text{CFG}} \) is a decidable language.

 Proof Idea: Specify a TM \(R \) that decides \(E_{\text{CFG}} \).

 \(R = \) “On input \(< G > \), where \(G \) is a CFG:

 1. Mark all terminal symbols in \(G \).
 2. Repeat until no new variables get marked:
 3. Mark any variable \(A \) where \(G \) has rule \(A \rightarrow U_1 U_2 \ldots U_k \)
 and each symbol \(U_1 U_2 \ldots U_k \) has already been marked.
 1. If start variable is not marked, *accept*; otherwise, *reject*."

20
Decidable (?) Problems for Context-Free Languages: CFGs

- **Check if 2 CFGs generate the same language.**

\[EQ_{\text{CFG}} = \{ < G, H > | G \text{ and } H \text{ are CFGs and } L(G) = L(H) \} \]

- **Not decidable! (see Chapter 5)**

- Why is this possible? Why is this problem not in \(\Sigma_0 \) if CFL is in \(\Sigma_0 \)?
Recall: Closure properties of CFL

- Reminder: closure properties can help us measure whether a computation model is reasonable or not
- CFL is closed under
 - Union, concatenation
 - Thus, exponentiation and *
- CFL is not closed under
 - Intersection
 - Complement
- Weak intersection:

If $A \in \text{CFL}$ and $R \in \text{REG}$, then $A \cap R \in \text{CFL}$
Overview of Section 4.1

- **Decidable Languages (in \(\Sigma_0 \))**: to foster later appreciation of undecidable languages
 - Context-Free Languages
 - Does a given CFG generate a given string?
 - Is the language of a given CFG empty?
 - **Every CFL is decidable by a Turing machine.**
Decidable Problems for Context-Free Languages: CFLs

- Every CFL is decidable by a Turing machine.
- Bad Idea: Convert PDA for CFL into TM
- Theorem 4.9: Every context-free language is decidable.

- Let A be a CFL and G be a CFG for A. (Where does G come from?)
- Design TM M_G that decides A.
- M_G = “On input w, where w is a string:
 1. Run TM S from Theorem 4.7 on input $<G,w>$.
 2. If S accepts, accept. If S rejects, reject.”
Summary: Some problems (languages) related to languages in Σ_0 have been shown in this lecture to be in Σ_0.

Remember that just because a language is in Σ_0 does not mean that every problem (language) related to members of its class is also in Σ_0!