Variants of Turing Machines

- **Robustness**: Invariance under certain changes

- What kinds of changes?
 - Stay put!
 - Multiple tapes
 - Nondeterminism
 - Enumerators

- (Abbreviate Turing Machine by TM.)
Stay Put!

- Transition function of the form:

\[\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\} \]

- Does this really provide additional computational power?
- No! Can convert TM with “stay put” feature to one without it. How?
- Theme: Show 2 models are equivalent by showing they can simulate each other.
Multi-Tape Turing Machines

- Ordinary TM with several tapes.
 - Each tape has its own head for reading and writing.
 - Initially the input is on tape 1, with the other tapes blank.
- Transition function of the form:
 \[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R, S\}^k \]
 \((k = \text{number of tapes}) \)
 \[\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, L, R, \ldots L) \]
- When TM is in state \(q_i \) and heads 1 through \(k \) are reading symbols \(a_1 \) through \(a_k \), TM goes to state \(q_j \), writes symbols \(b_1 \) through \(b_k \), and moves associated tape heads L, R, or S.

Note: \(k \) tapes (each with own alphabet) but only 1 common set of states!

Source: Sipser textbook
Multi-Tape Turing Machines

- Multi-tape Turing machines are of equal computational power with ordinary Turing machines!
 - **Corollary 3.15:** A language is Turing-recognizable if and only if some multi-tape Turing machine recognizes it.
 - One direction is easy (how?)
 - The other direction takes more thought...
 - **Theorem 3.13:** Every multi-tape Turing machine has an equivalent single-tape Turing machine.
 - Proof idea: see next slide...

Source: Sipser textbook
Theorem 3.13: Simulating Multi-Tape Turing Machine with Single Tape

- **Proof Ideas:**
 - Simulate k-tape TM M’s operation using single-tape TM S.
 - Create “virtual” tapes and heads.
 - # is a delimiter separating contents of one tape from another tape’s contents.
 - “Dotted” symbols represent head positions and add to tape alphabets.

Source: Sipser textbook
Theorem 3.13: Simulating Multi-Tape Turing Machine with Single Tape (cont.)

- **Processing input:** \(w = w_1 \cdots w_n \)
 - Format \(S \)'s tape (different blank symbol \(v \) for presentation purposes):
 \[
 \# \hat{w}_1 w_2 \cdots w_n \# \hat{\#} \hat{\#} \hat{\#} \cdots \#
 \]

- **Simulate single move:**
 - Scan rightwards to find symbols under virtual heads.
 - Update tapes according to \(M \)'s transition function.

- **Caveat: hitting right end (\#) of a virtual tape:**
 - Rightward shift of \(S \)'s tape by 1 unit and insert blank, then continue simulation

Source: Sipser textbook
Nondeterministic Turing Machines

- Transition function: \(\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\}) \)
- Computation is a tree whose branches correspond to different possibilities. Example: board work
 - If some branch leads to an accept state, machine accepts.
- Nondeterminism does not affect power of Turing machine!
- **Theorem 3.16**: Every nondeterministic Turing machine \((N)\) has an equivalent deterministic Turing machine \((D)\).
 - Proof Idea: Simulate, simulate!

Source: Sipser textbook
Theorem 3.16 Proof (cont.)

- **Proof Idea** (continued)
 - View N’s computation on input as a tree.
 - Each node is a configuration.
 - Search for an accepting configuration.
 - Important caveat: searching order matters
 - DFS vs. BFS *(which is better and why?)*
 - Encoding location on address tape:
 - Assume fan-out is at most b *(what does this correspond to?)*
 - Each node has address that is a string over alphabet: $\Sigma_b = \{1... b\}$

![Diagram](image)

Figure 3.17
Deterministic TM D simulating nondeterministic TM N

Source: Sipser textbook
Theorem 3.16 Proof (cont.)

- Operation of deterministic TM D:
 1. Put input w onto tape 1. Tapes 2 and 3 are empty.
 2. Copy tape 1 to tape 2.
 3. Use tape 2 to simulate N with input w on one branch.
 1. Before each step of N, consult tape 3 (why?)
 4. Replace string on tape 3 with lexicographically next string. Simulate next branch of N’s computation by going back to step 2.

Source: Sipser textbook
Consequences of Theorem 3.16

- **Corollary 3.18:**
 - A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.
 - **Proof Idea:**
 - One direction is easy *(how?)*
 - Other direction comes from Theorem 3.16.

- **Corollary 3.19:**
 - A language is decidable if and only if some nondeterministic Turing machine decides it.
 - **Proof Idea:**
 - Modify proof of Theorem 3.16 *(how?)*
Definition An **enumerator** E is a 2-tape TM with a special state named q_p ("print")

The language generated by E is

$L(E) = \{ x \in \Sigma^* | (q_0 \cup, q_0 \cup) \vdash^* (u \; q_p \; v, \; x \; q_p \; z) \text{ for some } u, v, z \in \Gamma^* \}$

- Here the instantaneous description is split into two parts (tape1, tape2)
- So this says that "x appears to the left of the tape 2 head when E enters the q_p state"
- Note that E *always* starts with a blank tape and potentially runs forever
- Basically, E generates the language consisting of all the strings it decides to print
- And it doesn't matter what's on tape 1 when E prints

Source: Sipser textbook
Theorem 3.21

$L \in \Sigma_1 \iff L = L(E)$ for some enumerator E (in other words, enumerators are equivalent to TMs)

(Recall Σ_1 is set of Turing-recognizable languages.)

Proof First we show that $L = L(E) \Rightarrow L \in \Sigma_1$. So assume that $L = L(E)$; we need to produce a TM M such that $L = L(M)$. We define M as a 3-tape TM that works like this:

1. input w (on tape #1)
2. run E on M's tapes #2 and #3
3. whenever E prints out a string x, compare x to w; if they are equal, then *accept*
 else goto 2 and continue running E

So, M accepts input strings (via input w) that appear on E's list.
Theorem 3.21 continued

Now we show that $L \in \Sigma_1 \Rightarrow L = L(E)$ for some enumerator E. So assume that $L = L(M)$ for some TM M; we need to produce an enumerator E such that $L = L(E)$. First let s_1, s_2, \ldots be the lexicographical enumeration of Σ^* (strings over M’s alphabet). E behaves as follows:

1. for $i := 1$ to ∞
 2. run M on input s_i
 3. if M accepts s_i then print string s_i
 (else continue with next i)

DOES NOT WORK!!

WHY??
Theorem 3.21 continued

Now we show that $L \in \Sigma_1 \Rightarrow L = L(E)$ for some enumerator E. So assume that $L = L(M)$ for some TM M; we need to produce an enumerator E such that $L = L(E)$. First let s_1, s_2, \ldots be the lexicographical enumeration of Σ^*. E behaves as follows:

1. for $t := 1$ to ∞ /* $t =$ time to allow */

2. for $j := 1$ to t /* continue resumes here */

3. compute the instantaneous description uqv in M such that $q_0 s_j \vdash^t uqv$. (If M halts before t steps, then continue)

4. if $q = q_{\text{acc}}$ then print string s_j
 (else continue)
Theorem 3.21 continued

- First, E never prints out a string s_j that is not accepted by M.
- Suppose that $q_0 s_5 \vdash^{27} u q_{\text{acc}} v$ (in other words, M accepts s_5 after exactly 27 steps).
 - Then E prints out s_5 in iteration $t=27, j=5$.
- Since every string s_j that is accepted by M is accepted in some number of steps t_j, E will print out s_j in iteration $t=t_j$ and in no other iteration.
 - This is a slightly different construction than the textbook, which prints out each accepted string s_j infinitely many times.
Summary

- Remarkably, the presented variants of the Turing machine model are all equivalent in power!

- Essential feature:
 - Unrestricted access to unlimited memory
 - More powerful than DFA, NFA, PDA...
 - Caveat: satisfy “reasonable requirements”
 - e.g. perform only finite work in a single step.