Regular expressions

- You might be familiar with these.
- Example: "^int .*(.*\()\;" is a (flex format) regular expression that appears to match C function prototypes that return ints.
- In our treatment, a regular expression is a program that generates a language of matching strings when you "run it".
- We will use a very compact definition that simplifies things later.
Regular expressions

Definition. Let Σ be an alphabet not containing any of the special characters in this list: $\varepsilon \emptyset () \cup \cdot \ast$

We define the syntax of the (programming) language $\text{REX}(\Sigma)$, abbreviated as REX, inductively:

- **Base cases**
 1. For all $a \in \Sigma$, $a \in \text{REX}$. In other words, each single character from Σ is a regular expression all by itself.
 2. $\varepsilon \in \text{REX}$. In other words, the literal symbol ε is a regular expression. In this context it is *not* the empty string but rather the single-character *name* for the empty string.
 3. $\emptyset \in \text{REX}$. Similarly, the literal symbol \emptyset is a regular expression.

Notes:
- REX is not defined in our textbook, but is helpful in continuing to build our diagram of languages.
- In our textbook, a represents language $\{a\}$, ε represents language $\{\varepsilon\}$.

3
Regular expressions

Definition continued

Induction cases

4. For all $r_1, r_2 \in \text{REX}$,
 \[(r_1 \cup r_2) \in \text{REX} \text{ also} \]

5. For all $r_1, r_2 \in \text{REX}$,
 \[(r_1 \cdot r_2) \in \text{REX} \text{ also} \]

Note: Later we remove dot, which is denoted by empty circle in textbook (later also removed).
Regular expressions

Definition continued

Induction cases continued

6. For all $r \in \text{REX}$,
 $(r^*) \in \text{REX}$ also

Examples over $\Sigma =$ \{0, 1\}

- ε and 0 and 1 and \emptyset
- $(((1 \cdot 0) \cdot (\varepsilon \cup \emptyset))^*)$
- $\varepsilon \varepsilon$ is not a regular expression

Remember, in the context of regular expressions, ε and \emptyset are ordinary characters

Note: Textbook also defines $R^+ = R \cdot R^*$, where R is a regular expression.
Semantics of regular expressions

Definition. We define the meaning of the language $\text{REX}(\Sigma)$ *inductively* using the $L()$ operator so that $L(r)$ denotes the language generated by r as follows:

- **Base cases**
 1. For all $a \in \Sigma$, $L(a) = \{ a \}$. A single-character regular expression generates the corresponding single-character string.
 2. $L(\varepsilon) = \{ \varepsilon \}$. The symbol for the empty string actually generates the empty string.
 3. $L(\emptyset) = \emptyset$. The symbol for the empty language actually generates the empty language.
Regular expressions

- **Definition continued**
 - **Induction cases**
 4. For all $r_1, r_2 \in \text{REX}$,
 \[L\left(r_1 \cup r_2 \right) = L(r_1) \cup L(r_2) \]
 5. For all $r_1, r_2 \in \text{REX}$,
 \[L\left(r_1 \cdot r_2 \right) = L(r_1) \cdot L(r_2) \]
 6. For all $r \in \text{REX}$,
 \[L\left(r^* \right) = (L(r))^* \]
 - **No other string is in \text{REX}(\Sigma)**

- **Example**
 - \[L\left(\left(\left((1 \cdot 0) \cdot (\varepsilon \cup \emptyset)\right)^* \right) \right) \text{ includes} \]
 \[\varepsilon, 10, 1010, 101010, 10101010, \ldots \]
Orientation

- We used highly flexible mathematical notation and state-transition diagrams to specify DFAs and NFAs
- Now we have a precise programming language REX that generates languages
- REX is designed to close the simplest languages under \cup, \ast, \cdot.
Abbreviations

- Instead of parentheses, we use precedence to indicate grouping when possible.
 - * (highest)
 - (lowest)
 - (lowest)

- Instead of ·, we just write elements next to each other
 - Example: (((1·0)·(ε∪∅))*) can be written as (10(ε∪∅))*

- If \(r \in \text{REX}(\Sigma) \), instead of writing \(rr^* \), we write \(r^+ \)
Abbreviations

- Instead of writing a union of all characters from Σ together to mean "any character", we just write Σ.
 - In a flex/grep regular expression this would be called ".".

- Instead of writing $L(r)$ when r is a regular expression, we consider r alone to simultaneously mean both the expression r and the language it generates, relying on context to disambiguate.
Abbreviations

- Caution: regular expressions are *strings* (programs). They are equal *only when* they contain exactly the same sequence of characters.
- `(((1·0)·(ε∪∅))*)` can be *abbreviated* `10(ε∪∅)*`
- however `(((1·0)·(ε∪∅))*)` ≠ `10(ε∪∅)*` as strings
- but `(((1·0)·(ε∪∅))*)` = `(10(ε∪∅))*` when they are considered to be the generated languages
- more accurately then,
 \[L((((1·0)·(ε∪∅))*)) = L((10(ε∪∅))*) \]
 = \[L((10)*) \]
Examples

- Find a regular expression for \(\{ w \in \{0,1\}^* \mid w \neq 10 \} \)

- Find a regular expression for \(\{ x \in \{0,1\}^* \mid \text{the 6}^{\text{th}} \text{ digit counting from the rightmost character of } x \text{ is } 1 \} \)

- Find a regular expression for \(L_3 = \{ x \in \{0,1\}^* \mid \text{the binary number } x \text{ is a multiple of } 3 \} \)

 (foreshadowing: can be done by starting with DFA and then ripping states)

+ Selected examples from textbook Example 1.53 (p. 65)
Facts

- REX(\(\Sigma\)) is itself a language over an alphabet \(\Gamma\) that is
 \[\Gamma = \Sigma \cup \{ () , (, , , , , , * , \varepsilon , \emptyset)\}\]
- For every \(\Sigma\), \(|\text{REX}(\Sigma)| = \infty\)
 \(\emptyset,(\emptyset^*),((\emptyset^*)^*),\ldots\)
 even without knowing \(\Sigma\) there are infinitely many elements in \(\text{REX}(\Sigma)\)
- **Question**: Can we find a DFA or NFA \(M\) with \(L(M) = \text{REX}(\Sigma)\)?
The DFA for L_3

```
Regular expression:
(0 ∪ 1 ___(0 1* 0)*___ 1 ) *
```

(Recall precedence of operators.)
Regular expression for L_3

- $(0 \cup 1 (0 1^* 0)^* 1)^*$

- L_3 is closed under concatenation, because of the overall form $(\)^*$

- Now suppose $x \in L_3$. Is $x^R \in L_3$?

 - Yes: see this is by reversing the regular expression and observing that the same regular expression results

 - So L_3 is also closed under reversal
Equivalence with Finite Automata

Theorem 1.54 A language is regular if and only if some regular expression describes it.

Proof: 2 directions

Lemma 1.55: If a language is described by a regular expression, then it is regular.
(Proof idea: Convert to an NFA.)

Lemma 1.60: If a language is regular, then it is described by a regular expression.
(Proof idea: Convert from DFA to GNFA to regular expression.)
Regular expressions generate regular languages

Lemma 1.55 For every regular expression r, $L(r)$ is a regular language.

Proof by induction on regular expressions.

- We used induction to create all of the regular expressions and then to define their languages, so we can use induction to visit each one and prove a property about it.

Recall that regular expressions were defined inductively.
\(L(\text{REX}) \subseteq \text{REG} \)

Base cases:

1. For every \(a \in \Sigma \), \(L(a) = \{ a \} \) is obviously regular:

 ![Diagram](image)

2. \(L(\varepsilon) = \{ \varepsilon \} \in \text{REG} \) also

3. \(L(\emptyset) = \emptyset \in \text{REG} \)
L(REX) ⊆ REG

Induction cases:

4. Suppose the induction hypothesis holds for \(r_1 \) and \(r_2 \). Namely, \(L(r_1) \in \text{REG} \) and \(L(r_2) \in \text{REG} \). We want to show that \(L((r_1 \cup r_2)) \in \text{REG} \) also. But look: by definition,

\[
L((r_1 \cup r_2)) = L(r_1) \cup L(r_2)
\]

Since both of these languages are regular, we can apply Theorem 1.45 (closure of \(\text{REG} \) under \(\cup \)) to conclude that their union is regular.
\(L(\text{REX}) \subseteq \text{REG} \)

Induction cases:

5. Now suppose \(L(r_1) \in \text{REG} \) and \(L(r_2) \in \text{REG} \).

By definition,

\[L((r_1 \cdot r_2)) = L(r_1) \cdot L(r_2) \]

By Theorem 1.47 (closure of REG under \(\cdot \)), this concatenation is regular too.

6. Finally, suppose \(L(r) \in \text{REG} \).

Then by definition,

\[L((r^*)) = (L(r))^* \]

By Theorem 1.49 (closure of REG under \(^* \)), this language is also regular. \(\text{QED} \)
On to $\text{REG} \subseteq L(\text{REX})$

- Now we'll show that each regular language (one accepted by an automaton) also can be described by a regular expression
 - Hence $\text{REG} = L(\text{REX})$
 - In other words, regular expressions are equivalent in power to finite automata
- This equivalence is called **Kleene's Theorem** (Theorem 1.54 in book)
Converting DFAs to REX

- Lemma 1.60 in textbook
- This approach uses yet another form of finite automaton called a GNFA (generalized NFA)
- The technique is easier to understand by working an example than by studying the proof
Syntax of GNFA

- A generalized NFA is a 5-tuple $(Q, \Sigma, \delta, q_s, q_a)$ such that
 1. Q is a finite set of states
 2. Σ is an alphabet
 3. $\delta: (Q - \{q_a\}) \times (Q - \{q_s\}) \rightarrow \text{REX}(\Sigma)$ is the transition function
 4. $q_s \in Q$ is the start state
 5. $q_a \in Q$ is the (one) accepting state
GNFA syntax summary

- Arcs are labeled with regular expressions
 - Meaning is that "input matching the label moves from old state to new state" -- just like NFA, but not just a single character at a time
- Start state has no incoming transitions, accept has no outgoing
- Every pair of states (except start & accept) has two arcs between them
 - Every state has a self-loop (except start & accept)
Construction strategy

- Will convert a DFA into a GNFA then iteratively shrink the GNFA until we end up with a diagram like this:

\[q_s \rightarrow \text{giant regular expression} \rightarrow q_a \]

meaning that exactly that input that matches the giant regular expression is in the language.
Converting DFA to GNFA

Adding new start state q_s is straightforward.

Then make each DFA accepting state have an ε transition to the single accepting state q_a.

Note: \emptyset transitions are not drawn here for sake of clarity, but can be important later on.
Interpreting arcs

\[\delta: (Q-\{q_a\}) \times (Q-\{q_s\}) \rightarrow \text{REX}(\Sigma) \]

In this diagram, for example,

- \(\delta(0,1) = 1 \)
- \(\delta(2,0) = \emptyset \)
- \(\delta(2,q_a) = \emptyset \)
- \(\delta(1,1) = \emptyset \)
- \(\delta(2,2) = 1 \)
- \(\delta(0,q_a) = \varepsilon \)
Eliminating a GNFA state

We arbitrarily choose an interior state (not q_s or q_a) to **rip** out of the machine.

Question: how is the ability of state i to get to state j affected when we remove rip?

Only the **solid** and **labeled** states and transitions are relevant to that question.
We produce a new GNFA that omits rip

- Its i-to-j label will compensate for the missing state
- We will do this for every \((i,j) \in (Q-\{q_a\}) \times (Q-\{q_s\})\)
- So we have to rewrite every label in order to eliminate this one state
- New label for i-to-j is \(R_4 \cup (R_1 \cdot (R_2)^* \cdot R_3)\)
Don't overlook

- The case \((i, i) \in (Q-\{q_a\}) \times (Q-\{q_s\})\)
- New label for i-to-i is still \(R_4 \cup (R_1 \cdot (R_2)^* \cdot R_3)\)

- Example proceeds on whiteboard, but first we’ll do textbook p. 75 (Figure 1.67) for a simpler one.
g/re/p

- What does grep do?

 \((\text{int} \mid \text{float})_\text{rec}.^*\text{emp}\) becomes

 \((\Sigma^*)(\text{int} \cup \text{float})_\text{rec}(\Sigma^*)\text{emp}(\Sigma^*)\)

- What does it mean?

- How does it work?

 - Regular expression \rightarrow NFA \rightarrow DFA \rightarrow

 state reduction

 - Then run DFA against each line of input,

 printing out the lines that it accepts
State machines

- Very common programming technique

```java
while (true) {
    switch (state) {
    case NEW_CONNECTION:
        process_login();
        state=RECEIVE_CMD;
        break;
    case RECEIVE_CMD:
        if (process cmd() == CMD QUIT)
            state=SHUTDOWN;
        break;
    case SHUTDOWN:
        ...
        break;
    ...
    ...
}
```

This chapter so far

§1.1: Introduction to languages & DFAs
§1.2: NFAs and DFAs recognize the same class of languages
§1.3: REX generates the same class of languages

✓ Three different programming "languages" specified in different levels of formality that solve the same types of computational problems
✓ Four, if you count GNFAs
Strategies

- If you're investigating a property of regular languages, then as soon as you know $L \in \text{REG}$, you know there are DFAs, NFAs, Regexes that describe it. Use whatever representation is convenient.

- But sometimes you're investigating the properties of the programs themselves: changing states, adding a * to a regex, etc. Then the knowledge that other representations exist might be relevant and might not.
All finite languages are regular

Theorem (not in book) \(\text{FIN} \subseteq \text{REG} \)

Proof Suppose \(L \in \text{FIN} \).

Then either \(L = \emptyset \), or \(L = \{ s_1, s_2, \ldots, s_n \} \)

where \(n \in \mathbb{N} \) and each \(s_i \in \Sigma^* \).

A regular expression describing \(L \) is, therefore, either \(\emptyset \) or

\[
s_1 \cup s_2 \cup \cdots \cup s_n \quad \text{QED}
\]

Note that this proof does not work for \(n=\infty \)
Each point is a language in this Venn diagram.

REG = L(DFA) = L(NFA) = L(REX) = L(GNFA) ≠ FIN

"the class of languages generated by DFAs"

is there a language out here?

ALL