Chapter 5 Lecture Notes
(Start of Section 5.1: Undecidable Problems from Language Theory with some material from Section 5.3: Mapping Reducibility)

David Martin
dm@cs.uml.edu
With thanks to Giam Pecelli and modifications by Karen Daniels
Each point is a language in this Venn diagram.
Recap: accept, not accept, reject

- \(L(M) = \{ x \mid M \text{ accepts } x \} \)
- \(x \in L(M) \iff M \text{ accepts } x \)
- \(x \notin L(M) \iff M \text{ does not accept } x \)

- There are two ways to not accept:
 - M rejects \(x \Rightarrow x \notin L(M) \)
 - Easy to detect when this happens during runtime
 - M loops on \(x \Rightarrow x \notin L(M) \)
 - Hard to detect when this happens during runtime

- If M is a decider, then M never loops on any \(x \)
- If M is not a decider, then it may be very hard to determine what \(L(M) \) is.
Chapter 5: Reducibility

- We’ve learned that $A_{TM} \in \Sigma_1 - \Sigma_0$ and that $NA_{TM} \in \text{ALL} - \Sigma_1$

- There are infinitely many other problems that are undecidable or unrecognizable
 - Many of these problems are similar in spirit; we’ll first see some of these.
 - There are also such problems that seem to have nothing to do with TMs at all, such as Post Correspondence Problem PCP; we’ll see this later.
 - *Reducibility* is an operation and closure property that can be used for proving how complex a language is by relating it to a known language.
The Halting Problem HALT^TM

- $\text{HALT}^\text{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ halts on the input } w \}$

 - Here, “halts on the input w” means that the TM either accepts w or rejects w; it does *not* go into an infinite loop on w.

 - Conceptually, this language should be undecidable, just like A^TM.

 - In A^TM, the question is “does the machine reach the accepting state”?

 - In HALT^TM, the question is “does the machine reach the accepting state or the rejecting state”?
HALT_{TM} is undecidable

Theorem 5.1 \(\text{HALT}_{\text{TM}} \notin \Sigma_0 \)

Proof by contradiction. Suppose that \(\text{HALT}_{\text{TM}} \) were decidable via a decider named \(M_1 \). We could then design a TM \(M_2 \) that efficiently transforms questions about \(A_{\text{TM}} \) (undecidable) into questions about \(\text{HALT}_{\text{TM}} \) as follows (different from textbook p. 189):

1. \(M_2 \): input \(<M,w>\) (reject if not of this form)
2. **Modify** \(M \) to \(M' \) so that transitions pointing to its reject state instead make it go into an infinite loop (why? how?)
3. Simulate the machine \(M_1 \) starting with input \(<M',w>\) until it halts:
 - If \(M_1 \) accepts \(<M',w>\), then \(M_2 \) accepts also
 - If \(M_1 \) rejects \(<M',w>\), then \(M_2 \) rejects also
 - (Note that \(M_1 \) never loops on any input (why?))
HALT$_{TM}$ is undecidable

1. M_2: input $<M,w>$ (reject if not of this form)
2. **Modify** M to M' so that transitions pointing to its reject state instead make it go into an infinite loop
3. Simulate the machine M_1 starting with input $<M',w>$ until it halts:
 - If M_1 accepts $<M',w>$, then M_2 accepts also
 - If M_1 rejects $<M',w>$, then M_2 rejects also
 - (Note that M_1 never loops on any input)

Then
- $<M,w> \in L(M_2) \Rightarrow <M',w> \in L(M_1) \Rightarrow <M,w> \in A_{TM}$
 (because M' halts on $w \iff M$ accepts w)
- $<M,w> \notin L(M_2) \Rightarrow <M',w> \notin L(M_1) \Rightarrow <M,w> \notin A_{TM}$
 (same reason)
HALT_{\text{TM}} is undecidable

- So \(L(M_2) = A_{\text{TM}} \)
- And since \(M_1 \) is a decider, \(M_2 \) is a decider
 - But that contradicts the undecidability of \(A_{\text{TM}} \)
 - QED

- This shows that HALT_{\text{TM}} somehow contains the “hard part” of \(A_{\text{TM}} \); the other differences are not critical from a decidability point of view.

- We now describe a way to more concisely express the relationship between two languages: mapping reductions.
Section 5.3:
Computable functions

- **Definition 5.17** A function \(f: \Sigma^* \rightarrow \Sigma^* \) is **computable** if there exists some TM \(M \) such that, for every input \(w \in \Sigma^* \),

 1. When started with input \(w \), \(M \) halts eventually
 2. At the time that \(M \) halts, its tape contains \(f(w) \) (followed by blanks, as usual)

- Note that \(f \) is defined *mathematically* and \(M \) is a *TM* that implements it
 - \(f \) must be defined for *all* strings in \(\Sigma^* \)
Section 5.3: Mapping reductions

- **Definition 5.20** Let A and B be languages over Σ. Then A is *mapping reducible* to B, written “$A \leq_m B$ via f” if

1. There exists a computable function $f: \Sigma^* \rightarrow \Sigma^*$ and
2. For every $w \in \Sigma^*$, $w \in A \iff f(w) \in B$

- Equivalently: $w \in A \Rightarrow f(w) \in B$
 and $w \notin A \Rightarrow f(w) \notin B$

- These conditions say that it is possible to *efficiently convert* questions about A into questions about B

- $A \leq_m B$ means that B is “at least as hard as” A, with respect to computability (a very coarse measure)

- Fact: \leq_m is reflexive and transitive (but not symmetric or antisymmetric)
Section 5.3: A partial picture of $A \leq_m B$ via f

Points are *strings* in this Venn diagram (not languages)

Each association is *consistent* with the statement “$A \leq_m B$ via f”

f has to send every string somewhere; this diagram only shows 4 mappings

f does *not* have to be 1-1 or onto
Section 5.3: Closure under \leq_m

☐ **Theorem 5.22** If $A \leq_m B$ and $B \in \Sigma_0$ then $A \in \Sigma_0$

☐ **Theorem 5.28** If $A \leq_m B$ and $B \in \Sigma_1$ then $A \in \Sigma_1$

☐ **Corollary 5.23** If $A \leq_m B$ and $A \notin \Sigma_0$ then $B \notin \Sigma_0$

☐ **Corollary 5.29** If $A \leq_m B$ and $A \notin \Sigma_1$ then $B \notin \Sigma_1$
Section 5.3: Sample proof

Theorem 5.22 If $A \leq_m B$ and $B \in \Sigma_0$ then $A \in \Sigma_0$.

Proof Assume $A \leq_m B$ via f and $B \in \Sigma_0$. Let M_1 be the TM for f and M_2 be the decider TM for B. We define M_3 to decide A:

1. M_3: input x
2. simulate M_1 on input x
3. let y be the contents of the tape when M_1 halts
 1. (Note $y = f(x)$ because M_1 implements the reduction $A \leq_m B$)
4. simulate M_2 on input y
 1. If M_2 accepts then accept
 2. If M_2 rejects then reject

Then M_3 is clearly a decider, because M_1 and M_2 always halt. And $L(M_3) = A$ because we know that $x \in A \iff f(x) \in B$

QED
Sample Application

We carefully rephrase Theorem 5.1 using \leq_m:

Theorem 5.1 $\text{HALT}_{\text{TM}} \notin \Sigma_0$

Proof By Corollary 5.23, it suffices to show that $A_{\text{TM}} \leq_m \text{HALT}_{\text{TM}}$.

(different from textbook Example 5.24, p. 208)

First, let M_{loop} be some fixed TM that goes into an infinite loop on every input it is given.
Define M_2 as a TM to compute a function $f: \Sigma^* \rightarrow \Sigma^*$ by:

1. M_2: input x
2. if x is of the form $<M,w>$ where M is a TM and w is a string, then
 1. Modify M to M' so that transitions pointing to its reject state instead make it go into an infinite loop
 2. Halt with $<M',w>$ on the tape
3. else halt with $<M_{\text{loop}}, \varepsilon>$ on the tape

Then for strings x of the form $<M,w>$:

$<M,w> \in A_{\text{TM}} \iff <M',w> \in \text{HALT}_{\text{TM}} \iff f(<M,w>) \in \text{HALT}_{\text{TM}}$

and for strings x not of the form $<M,w>$:

$x \notin A_{\text{TM}}$, and $f(x) = <M_{\text{loop}}, \varepsilon> \notin \text{HALT}_{\text{TM}}$

Taken together, for all $x \in \Sigma^*$,

$x \in A_{\text{TM}} \iff f(x) \in \text{HALT}_{\text{TM}}$. So $A_{\text{TM}} \leq_m \text{HALT}_{\text{TM}}$

QED
Comment

- The machine M_{loop} was not strictly necessary in the previous example; M_2 could have just left x on the tape if it were not of the form $<M,w>$ and things still work out OK (WHY?)
- But for some reductions you need to do something like M_{loop}
Review: Undecidability and reducibility

- An undecidable language is one that is not in Σ_0
- Standard example:
 $A_{TM} = L(U) = \{ <M,w> \mid M \text{ is a TM and } w \in L(M) \}$

- An unrecognizable language is one that is not in Σ_1
- Standard example:
 $NA_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \notin L(M) \}$
Review: Undecidability and reducibility

- We also saw that \(\text{HALT}_{TM} = \{ <M,w> \mid M \text{ is a TM and } M \text{ halts on the input } w \} \) is undecidable.

- A mathematical function \(f: \Sigma^* \rightarrow \Sigma^* \) is \textit{computable} if there exists some TM \(M \) that transforms the TM's input into the function's output on the TM's tape.

- A is \textit{mapping reducible} to B, written \(A \leq_m B \) via \(f \) if
 1. There exists a \textit{computable} function \(f: \Sigma^* \rightarrow \Sigma^* \) and
 2. For every \(w \in \Sigma^* \), \(w \in A \iff f(w) \in B \)
 - Equivalently: \(w \in A \Rightarrow f(w) \in B \) \textbf{and} \(w \notin A \Rightarrow f(w) \notin B \)

- If A is undecidable and \(A \leq_m B \), then B is undecidable ("at least as hard as A")
Another application

Let $A_{10} = \{ <M> | M \text{ is a TM and } 10 \in L(M) \}$

(board examples)

Claim $A_{10} \in \Sigma_1 - \Sigma_0$

Proof that A_{10} is undecidable: it suffices to show that $A_{TM} \leq_m A_{10}$. We want this to be true:

$\forall x \ x = <M, w> \in A_{TM} \Rightarrow f(<M, w>) \in A_{10}$

$\neg x \notin A_{TM} \Rightarrow f(x) \notin A_{10}$

So $f(x)$ should be a program $<M'>$ that accepts 10 if and only if $[x = <M, w> \text{ and } M \text{ accepts } w]$.
Proof continued

Let \(M_\emptyset \) be some TM such that \(L(M_\emptyset) = \emptyset \). Then we define the TM computing \(f \):

1. \(f \): input \(x \)
2. if \(x \) is not of the form \(<M,w> \) then \(f \) prints \(<M_\emptyset> \) and halts, else
3. \(x = <M,w> \)
4. let \(M' \) be a TM defined as follows:
 1. \(M' \): input \(z \)
 2. simulate \(M \) on input \(w \) until it halts (if ever)
 3. if \(M \) accepted \(w \) then \(M' \) accepts \(z \)
 4. else if \(M \) rejected \(w \) then \(M' \) rejects \(z \)
 5. else \(M \) is looping on \(w \) so \(M' \) loops on \(z \) also
5. \(f \) prints \(<M'> \) and halts
Proof continued

- First, f is computable: the given TM just looks at its input as a string, formulates a different string, and prints it out (in step 2 or 5)
 - In particular, M' is not run yet, it is merely constructed

- <M,w> ∈ A_{TM} ⇒ L(M')=Σ* ⇒ 10 ∈ L(M') ⇒ f(<M,w>) ∈ A_{10}

- [x not of the form <M,w>] ⇒ x ∉ A_{TM} ⇒ f(x)=<M_∅> ∉ A_{10}
Proof continued

- Finally, $x = <M, w> \notin A_{TM} \Rightarrow L(M') = \emptyset \Rightarrow f(<M, w>) \notin A_{10}$

If M loops forever on w, then M' loops forever on z as observed in step 4.5

Else if M rejects w, then M' rejects z in step 4.4

So if M doesn’t accept w, then M' doesn’t accept z either, no matter what z is

- So $A_{TM} \leq_m A_{10}$ via f.

 QED

Note that this proof doesn’t really depend on the string 10 in particular.
Tricky Case: $E_{TM} \notin \Sigma_0$ but $A_{TM} \leq_m E_{TM}$

- Let: $E_{TM} = \{<M>|<M>$ is a TM and $L(M) = \emptyset\}$

 - Approach: Set up proof by contradiction to show E_{TM} is undecidable.

 - By way of contradiction, assume existence of decider R for E_{TM}.

 - We’ll use this decider R to create TM decider S for A_{TM}, contradicting the fact that we know A_{TM} is undecidable.

 - Subtlety: Run R on modification M_1 of $<M>$ so that M_1 rejects all strings except w.

 - $S =$ “On input $<M,w>$:
 1. Use description of M and w to construct TM M_1.
 2. Run R on input $<M_1>$
 3. If R accepts, reject; if R rejects, accept.

Why does this not provide mapping reducibility?
Example: $E_{TM} \leq_m EQ_{TM}$

- Let: $EQ_{TM} = \{< M_1, M_2 > | M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$
 - Approach: Set up proof by contradiction to show EQ_{TM} is undecidable.
 - By way of contradiction, assume existence of decider R for EQ_{TM}.
 - We’ll use this decider R to create TM decider S for E_{TM}, contradicting the fact that we know E_{TM} is undecidable.
 - Subtlety: Which 2 languages do we run EQ_{TM} on?

 $S = \text{“On input } <M>:\$
 1. Construct TM M_1, which rejects all inputs.
 2. Run R on input $< M, M_1 >$.
 3. If R accepts, accepts; if R rejects, reject.

Where is the mapping reducibility here?
Yet Another Tricky Case?

- **REG\textsubscript{TM} = \{<M> | M is a TM and L(M) \in \text{REG}\}**
- **Theorem 5.3** REG\textsubscript{TM} \not\in \Sigma_0 (not decidable)
- **Proof:**
 - Assume REG\textsubscript{TM} is decidable by TM R.
 - Using R, construct TM S that decides A\textsubscript{TM}.
 - S’s input is <M,w>. Create M\textsubscript{2} from M so M\textsubscript{2} recognizes a regular language iff M accepts w.
 - Key points:
 - M\textsubscript{2} recognizes nonregular language \{0^n1^n | n \geq 0\} if M does not accept w.
 - M\textsubscript{2} recognizes regular language \Sigma^* if M does accept w.
 - S = “On input <M,w>:
 - Construct M\textsubscript{2} (see next slide for further details)
 - Run R on input < M\textsubscript{2} > (Note R can decide whether or not L(M\textsubscript{2}) is regular.)
 - If R accepts, accept; if R rejects, reject.”

Sources: Sipser textbook and http://echochamber.me
Yet Another Tricky Case? (continued)

- Create M_2 from M so M_2 recognizes a regular language iff M accepts w.
 - M_2 recognizes nonregular language $\{0^n1^n \mid n \geq 0\}$ if M does not accept w.
 - M_2 recognizes regular language Σ^* if M does accept w.
- **How?** We want this behavior for M_2:
 - On arbitrary input x:
 - If M accepts w, then M_2 accepts
 - thus recognizing regular language Σ^* since all strings are accepted by M_2 when M accepts w
 - If M does not accept w, then:
 - If $x \in \{0^n1^n \mid n \geq 0\}$, then M_2 accepts.
 - If $x \not\in \{0^n1^n \mid n \geq 0\}$, then M_2 rejects or loops.

Sources: Sipser textbook and http://echochamber.me
Yet Another Tricky Case? (continued)

☐ To fix problem, observe:
 - when $x \in \{0^n1^n \mid n \geq 0\}$ M_2 accepts regardless of whether M accepts w
 - when $x \not\in \{0^n1^n \mid n \geq 0\}$ M_2 accepts iff M accepts w

☐ Based on this, pull $x \in \{0^n1^n \mid n \geq 0\}$ test outside to obtain this M_2 behavior:

 ☐ On arbitrary input x:
 - If $x \in \{0^n1^n \mid n \geq 0\}$ then accept.
 - If $x \not\in \{0^n1^n \mid n \geq 0\}$ then run M on input w and accept if M accepts w.

☐ $\text{REG}_{\text{TM}} \not\subseteq \Sigma_0$ QED

☐ Can we also show $\text{ATM} \leq_m \text{REG}_{\text{TM}}$?

Sources: Sipser textbook and http://echochamber.me
Each point is a language in this Venn diagram.