91.304 Foundations of (Theoretical) Computer Science

Chapter 5 Lecture Notes (Remainder)

David Martin (with modifications by Karen Daniels)
dm@cs.uml.edu
With thanks to Giam Pecelli

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
Computation Histories

- Recall the notion of **configuration**: (state, head_position, tape_contents).
- In a deterministic TM every transition takes us from one configuration to the next.
- The idea of "**computation history**" is based on sequences of configurations.
Computation Histories

Definition 5.5: Let M be a TM and w a string:

- An **accepting computation history** for M on w is a sequence of configurations $C_1, C_2, ..., C_k$, where C_1 is the start configuration of M on w, C_k is an accepting configuration of M, and each $C_i \rightarrow C_{i+1}$ according to the rules of M.

- A **rejecting computation history** for M on w is defined similarly, except that C_k is a rejecting configuration for M.
Computation Histories

Definition 5.6: A *linear bounded automaton* is a standard TM whose tape head is not allowed to move beyond the tape squares containing the input.

Note: If the tape alphabet is larger than the input alphabet, the available memory can be increased by a constant factor - but the amount of memory remains a linear function of the length of the input.
Linear Bounded Automata

- Example (using left and right end markers): *(board work)*

- They are powerful: the following are LBAs:
 - Decider for A_{DFA}
 - Decider for A_{CFG}
 - Decider for E_{DFA}
 - Decider for E_{CFG}

- Every CFL can be decided by an LBA.
Computation Histories

Why bother? LBAs can be shown sufficient for the recognition of almost all "realistic" classes of languages, in particular CFLs:
- roughly, your C program will compile (actually, parse, but who's counting?) in a ("small") constant multiple of the number of bytes necessary to store it in memory.

Definition:
\[A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts } w \} \]

Question: is \(A_{LBA} \) decidable? The "general" problem \(A_{TM} \) is not...
Lemma 5.8: Let M be an LBA with q states and g symbols in the tape alphabet. Then there are exactly q^ng^n distinct configurations of M for a tape of length n.

Proof. A configuration is uniquely determined
1. by the state M is in (q possibilities),
2. by the head position (n possibilities) and
3. by the tape contents (g^n possibilities: g possibilities for each of the n tape positions).
Computation Histories

Theorem 5.9. A_{LBA} is decidable.

Proof. We construct the following TM D:

1. On the first tape, store the input $\langle M, w \rangle$.
2. On the second tape, copy w.
3. On the third tape write 1^{qngn} (so, unary: D extracts q and g from M, n from w). Leave the head on the last 1.
4. Using the second tape, simulate M on w.
5. If M halts in the accepting or rejecting state with the head of tape 3 on a 1, accept or reject.
6. After each time an instruction of M is simulated, write a blank on tape 3 and move that head left.
7. If the head of tape 3 reaches $\$, reject.
Computation Histories

Proof (continued). The reason why this works is that after qng^n configurations we **must** be repeating ourselves, and thus have fallen into a loop.

QED
Computation Histories

Theorem 5.10:

\[E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA where } L(M) = \emptyset \} \]

is undecidable. \((\not\in \Sigma_0)\)

Theorem 5.13:

\[\text{ALL}_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \} \]

is undecidable. \((\not\in \Sigma_0)\)
Computation Histories

Proof of 5.10 We'll show that $\text{NA}_{\text{TM}} \leq_m \text{E}_{\text{LBA}}$. (textbook reduces from A_{TM})

- On input $\langle M, w \rangle$, the reduction will construct an LBA, say $B = B_{\langle M, w \rangle}$, such that M doesn't accept w iff $L(B_{\langle M, w \rangle})$ is empty. We will not run B on anything, but we must show that we can **construct** such a B via a Turing Machine from any $\langle M, w \rangle$.

- We construct B so that it will accept input x iff x is an accepting computation history for M on w. An accepting computation history is a finite string of the form $\# C_1 \# C_2 \# \ldots \# C_k \#$ where
 1. C_1 is the starting configuration of M with input w
 2. for all i, the relation $C_i \vdash C_{i+1}$ holds, according to M
 3. C_k is an accepting configuration of M.
Computation Histories

- One can build the initial string q_0w into $B_{(M,w)} \mu$ so the check can be performed.
- One can check that the last configuration contains the accepting state - just scan down the input string of configurations.
- One can check that each configuration follows legally from the previous one: check that they are identical except for the changes implied by the transition function of M. Move back and forth marking with a dot the positions just compared. When we find differences (they can be only over three adjacent characters), we check that they meet the requirements of the transitions of M.

Computation Histories

- If all conditions are satisfied, then $B_{\langle M, w \rangle}$ accepts this proposed computation history x, otherwise it rejects.

It should be reasonably clear that

a) Given $\langle M, w \rangle$ as input, the reduction can produce a $B_{\langle M, w \rangle}$ as output with this behavior.

b) Such a $B_{\langle M, w \rangle}$ is always an LBA (why?).

And now:

$\langle M, w \rangle \in \text{NA}_{\text{TM}} \iff M$ doesn't accept w

\iff there is no accepting computation history for M on w

$\iff B_{\langle M, w \rangle}$ does not accept any input

$\iff B_{\langle M, w \rangle} \in \text{ELBA}$

QED
Computation Histories

Theorem 5.13 \(\text{ALL}_{\text{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \} \) is undecidable.

Proof. Will show that \(\text{NATM} \leq_m \text{ALL}_{\text{CFG}} \) using computation histories: given \(\langle M, w \rangle \) construct a CFG \(G_{\langle M, w \rangle} \) that generates all strings \(\iff M \) does not accept \(w \).

If \(M \) does accept \(w \), \(G_{\langle M, w \rangle} \) will not generate one string: the accepting computation history for \(M \) on \(w \).

We must show that we can construct this \(G_{\langle M, w \rangle} \) via a TM (the reduction) when it is given \(\langle M, w \rangle \) as input.

Again, an accepting computation history of \(M \) on \(w \) is a finite string of the form \(\# C_1 \# C_2 \# \ldots \# C_k \# \) where

1. \(C_1 \) is the starting configuration of \(M \) with input \(w \)
2. for all \(i \), the relation \(C_i \vdash C_{i+1} \) holds, according to \(M \)
3. \(C_k \) is an accepting configuration of \(M \)
Computation Histories

For a string not to be an accepting configuration history for M on w, at least one of the three conditions must fail. If M does not accept w, no such computation history exists, thus all strings fail, and $G_{\langle M, w \rangle}$ would generate all strings.

We construct the grammar $G_{\langle M, w \rangle}$ using the results that establish equivalence between CFGs and PDAs (all the constructions are algorithmic - thus TM performable, so we are OK).
Computation Histories

The reduction constructs a PDA $D_{(M,w)}$. It is nondeterministic, so at start we have 3 branches. This machine will accept strings that are not accepting computation histories:

1. One branch checks if the beginning of the input is C_1. Accepts if not.

2. One branch checks if the end C_k contains q_{accept}. Accepts if not.

3. One branch scans the input until it decides (non-deterministically) that is has reached a C_i. It pushes the contents of C_i onto the stack, and verifies that the stack contents match C_{i+1} except for the modifications due to the transition. Accepts if not.
Computation Histories

The only problem is that we would be trying to match potentially unbounded strings such as $C_i \# C_{i+1}$, and that's something we can't do in a PDA, because stacks are LIFO structures. Yet if adjacent configurations were written in reverse order of each other, it would be easy to do.

This turns out to be a non-issue. For each normal accepting computation history

\[
\ C_1 \ # \ C_2 \ # \ C_3 \ # \ C_4 \ # \ ... \ # \ C_k \
\]

there is another string that is the same except that it reverses every other component:

\[
\ C_1 \ # \ C_2^R \ # \ C_3 \ # \ C_4^R \ # \ ... \ # \ C_k \
\]

So our PDA $D_{\langle M, w \rangle}$ will just assume that its input is in this form rather than the ordinary form of a computation history. Then we convert our PDA into the CFG $G_{\langle M, w \rangle}$, and we're done. \textbf{QED}
Using Similar Strategy...

☐ EQ_{CFG} is undecidable.

- Textbook Exercise 5.1, p. 211.
- Recall:
 ☐ $\text{EQ}_{\text{CFG}} = \{ < G, H > \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$
Landscape at end of Chapter 5

Each point is a language in this Venn diagram.
A natural undecidable language

- **Post’s Correspondence Problem** concerns *dominos* of the form

 \[
 \begin{array}{ccc}
 a & a & cb \\
 b & ab & aa \\
 \end{array}
 \]

 where each domino has a “top” and a “bottom” chosen from an underlying alphabet \(\Sigma \).

- An **instance** of the problem is a *finite* set \(P = \{ [t_1, b_1], [t_2, b_2], \ldots, [t_k, b_k] \} \) of dominos
 - Each \(t_i \) and \(b_i \) is a *nonempty* string over \(\Sigma \) (in other words, a member of \(\Sigma^+ \))
 - Think of each instance \(P \) as an alphabet
 - You can form *domino strings* over the alphabet \(P \)
Post’s Correspondence Problem

- Let \(\Sigma = \{a,b,c\} \) and \(P_1 = \{[b,ca], [a,ab], [ca,a], [abc,c]\} \). Sample domino string over \(P_1 \):
 - \(\text{ca abc} \)
 - \(\text{a abc} \)
 - \(\text{a c} \)

- A domino string is a match if the concatenation of characters on its top row is equal to the concatenation of characters on its bottom row.
- Repetitions of dominos are permitted.
- The example above is not a match, because \(\text{caabc} \neq \text{ac} \).
- But we can find a match using this instance \(P_1 \). One thing we know for sure: each match must begin with same character on top & bottom…
Post’s Correspondence Problem

- An instance P contains a match if there is some nonempty domino string formed from P that is a match.

- **Definition**
 \[PCP = \{ <P> \mid P \text{ is an instance that contains a match} \} \]

- **Theorem 5.15** $PCP \notin \Sigma_0$
Proof outline

Proof Define the **Modified PCP**:

\[\text{MPCP} = \{ <P, d_1> \mid P \text{ is an instance that contains a match that begins with the domino } d_1 \in P \} \]

We’ll show that \(A_{TM} \leq_m \text{MPCP} \leq_m PCP \). Most of the work is in the first reduction, which we’ll call \(f \).

The idea is that \(<M,w> \in A_{TM} \) exactly when \(M \) goes from its initial configuration on input \(w \) into an accepting one:

\[<M,w> \in A_{TM} \iff q_0 \xrightarrow{*}^* q_{acc} \text{ for some } x, y \in \Gamma^* \]

We’ll construct the reduction \(f \) so that it transforms \(<M,w> \) into an instance of MPCP in which a **match actually describes an accepting computation history of \(M \) on \(w \)**. The match is not a one-for-one rewriting of the computation history, but it's quite close.
Definition of reduction f

A. f: input x

B. if x is not of form $<M,w>$ where M is a TM, then print out some fixed string that we know isn’t in MPCP and halt

C. modify $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{acc},q_{rej})$ so that:
 A. it still recognizes the same language as before
 B. but it never attempts to move left of its leftmost tape cell (substitute right-then-left motion instead)

D. construct $P=\{d_1,\ldots,d_k\}$ using rules 1-7 (on next slides…)

E. print $<P,d_1>$ and halt
Rule 1 of 7: initial configuration

- This is the initial domino and it describes M's initial configuration:
 \[d_1 = \begin{array}{c} \# \text{ old config on top} \\ \# q_0 w \# \text{ new config on bottom} \end{array} \]

- This is the only domino that is bottom-heavy, meaning that it has more characters on the bottom than on the top.

- To get a match, there must also be dominos in the kit that are top-heavy to compensate.

- But most of the dominos will be perfectly balanced.

- This is the only domino that depends on the string w. The rest are either constant or depend on M alone.
Example TM M

$\Sigma = \{1,2,3\}$
$\Gamma = \{1,2,3,\$, $\sqcup\}$

Here Γ on transition label represents any character of tape alphabet.
Also, Γ / R represents $\Gamma \to R$.

Unlabeled transitions point to q_{rej}

Transitions out of q_{acc} and q_{rej} are never actually taken...
Rule 1:

#q_0w#

Example kit for
<\text{M},w>
Rule 2 of 7: right moves

- Suppose $\delta(q, a) = (r, b, R)$. Then we want to ensure that a matched set of dominos can include this computation history snippet:

 ... qa ... \vdash ... br ...

 (state is now r, a is now b, moved to the right)

- So, for all $a, b \in \Gamma$ and $q \in Q-\{q_{\text{rej}}\}$ and $r \in Q$ and $\delta(q, a) = (r, b, R)$, we add the following domino to the set P:

 \[
 \begin{array}{l}
 qa \quad \text{old config} \\
 br \quad \text{new config}
 \end{array}
 \]

- Note: If q_{rej} appears in a configuration, then we want to prevent a match, so we exclude dominos that might help make a partial match grow towards a full match.

- Note: If q_{acc} appears in a configuration, then we'll use rules 6 and 7 to proceed towards a match.

- Note: $\# \notin \Gamma$. It's in the domino alphabet but not the TM alphabet.
Rule 1:
#
#q_0w#

Rule 2:
q_01 q_02 q_03 q_0$ q_0 \sqcup
Right moves
q_1 q_1 q_1 q_1 q_1
q_11 $q_1 \sqcup$ q_1
2q_1 3q_1 q_{rej}
$q_{\text{acc}}1$ $q_{\text{acc}}2$ $q_{\text{acc}}3$ q_{acc} $q_{\text{acc}} \sqcup$
1q_{acc} 2q_{acc} 3q_{acc} q_{acc} $q_{\text{acc}} \sqcup$

Example kit for
$<M,w>$
Rule 3 of 7: left moves

- Suppose $\delta(q, a) = (r, b, L)$. Then we want to ensure that a matched set of dominos can include this computation history snippet:

 ... cqa ... \vdash ... rcb ...

 (state is now r, a is now b, moved to the left, c is unchanged)

- So, for all $a, b, c \in \Gamma$ and $q \in Q - \{q_{\text{acc}}, q_{\text{rej}}\}$ and $r \in Q$ and $\delta(q, a) = (r, b, L)$, we add the following domino to the set P:

 \[
 \begin{array}{c}
 \text{cqa} \quad \text{old config} \\
 \text{rcb} \quad \text{new config}
 \end{array}
 \]

- Note that we don't care what c is; we add in one domino for each choice of c.

- Also, remember that M never tries to move left when it's at the left end of the tape. So there always is some character c to the left of the tape head when moving left, and so these dominos account for all of the possible left moves.

Why the lack of symmetry between right and left move cases?
Rule 1: #
#q_0 w#

Rule 2: q_0 1 q_0 2 q_0 3 q_0 $ q_0 \sqcup
Right moves $q_1 $q_1 $q_1 $q_1 $q_1
q_1 1 q_1 \sqcup q_1$
2q_1 3q_1 $q_{rej}

Rule 3: 1q_1 2 2q_1 2 3q_1 2 $q_1 2 \sqcup q_1 2
Left moves q_1 11 q_1 21 q_1 31 q_1 $1 q_1 \sqcup 1
1q_1 3 2q_1 3 3q_1 3 $q_1 3 \sqcup q_1 3
q_{acc} 13 q_{acc} 23 q_{acc} 33 q_{acc} $3 q_{acc} \sqcup 3

Example kit for <M,w>
Rule 4 of 7: the faraway tape

- The left move and right move dominoes determine what happens in the immediate vicinity of the tape head. The rest of the tape is unaffected by the transition.
- So, for every $a \in \Gamma$, add this domino to the kit:

 a

 a

 a

 a
Rule 1:

#q_{0w}#

Rule 2:

$q_01 \quad q_02 \quad q_03 \quad q_0$ \quad \text{q}_0 \downarrow

Right moves

$q_11 \quad q_1 \downarrow \quad q_1$

$2q_1 \quad 3q_1 \quad \text{q}_{\text{rej}}$

$q_{\text{acc}}1 \quad q_{\text{acc}}2 \quad q_{\text{acc}}3 \quad q_{\text{acc}}$ \quad q_{\text{acc}} \downarrow

1$q_{\text{acc}} \quad 2q_{\text{acc}} \quad 3q_{\text{acc}} \quad \text{q}_{\text{acc}} \downarrow \quad \text{q}_{\text{acc}}$

Example kit for $\langle M, W \rangle$

Rule 3:

Left moves

$q_{11} \quad q_{12} \quad q_{13} \quad q_{1}$ \quad q_{1}\downarrow

$q_{12} \quad q_{13} \quad q_{14} \quad q_{15} \quad q_{16}$ \quad q_{17} \quad q_{18} \quad q_{19} \quad q_{10} \quad q_{11}$

Rule 4:

Copying

1 \quad 2 \quad 3 \quad \$ \quad \text{\downarrow}$
Rule 5 of 7: the # separators

- Add these two dominos to the kit:

 | # | # | old config |
 | # | □ | # | new config |

- These allow the separators to be carried along.

- The second domino allows a blank to be added to the right of the tape.
Rule 1:

#q0w#

Rule 2:
q01 q02 q03 q0$ q0 \sqcup
Right moves q_1 q_1 q_1 q_1 q_1

q1$ q1 \sqcup q1$

2q1 3q1 q_{rej}

q_{acc}1 q_{acc}2 q_{acc}3 q_{acc}$ q_{acc} \sqcup

1q_{acc} 2q_{acc} 3q_{acc} $q_{acc} \sqcup q_{acc}$

Example kit for <M,W>

Rule 3:
1q12 2q12 3q12 $q_12 \sqcup q_12$
Left moves q111 q121 q131 q1$1 q1 \sqcup 1$

1q13 2q13 3q13 $q_13 \sqcup q_13$

q_{acc}13 q_{acc}23 q_{acc}33 q_{acc}$3 q_{acc} \sqcup 3$

Rule 4:
1 2 3 $ \sqcup$
Copying 1 2 3 $ \sqcup$

Rule 5:
Separators # #
\sqcup
Rule 6 of 7: accepter

- For every $a \in \Gamma$, add these two dominos to the kit:

 $a q_{acc} \quad q_{acc} a \quad \text{old config}$

 $q_{acc} \quad q_{acc} \quad \text{new config}$

- This means that when q_{acc} appears in a configuration, the adjacent characters can be squeezed out, one configuration at a time, leading towards a match.

- These are the top-heavy dominos to match the initial, bottom-heavy one.
Rule 1:

#q_0w#

Rule 2:

q_01 q_02 q_03 q_0$ q_0 ⊥

Right moves

q_1 q_1 q_1 q_1 q_1

q_11 q_1 q_1$

2q_1 3q_1 q_{rej}

q_{acc}1 q_{acc}2 q_{acc}3 q_{acc}$ q_{acc} ⊥

1q_{acc} 2q_{acc} 3q_{acc} $q_{acc} ⊥ q_{acc}$

Example kit for <M,w>

Rule 3:

1q_{12} 2q_{12} 3q_{12} q_{12} q_{12}

Left moves

q_{11} q_{12} q_{13} q_{1}$ q_{1}$

1q_{13} 2q_{13} 3q_{13} q_{13} q_{13}

q_{acc}13 q_{acc}23 q_{acc}33 q_{acc}$3 q_{acc} ⊥3

Rule 4:

1 2 3 $ ⊥$

Copying

1 2 3 $ ⊥$

Rule 5:

Separators # # #

Rule 6:

1q_{acc} q_{acc}1 2q_{acc} q_{acc}2 3q_{acc} q_{acc}3 $q_{acc} q_{acc}$ $q_{acc} ⊥ q_{acc} q_{acc}$

Acceptors q_{acc} q_{acc} q_{acc} q_{acc} q_{acc} q_{acc} q_{acc} q_{acc} q_{acc} q_{acc}
Rule 7 of 7: finisher

☐ Add this single domino to the kit:

$q_{acc}##$

#

☐ You just need it. You'll see why...
Rule 1: #
#q_{0W}#

Rule 2:
\begin{align*}
q_01 & q_02 & q_03 & q_0$ & q_0 \uparrow \\
\text{Right moves} & \quad & \quad & \quad & \quad \\
$q_11 & q_1 \uparrow & q_1$ & \quad & \quad & \quad & \quad \\
2q_1 & 3q_1 & $q_{\text{rej}} & \quad & \quad & \quad & \quad \\
\end{align*}

Example kit for $<M, W>$

Rule 3:
\begin{align*}
1q_12 & 2q_{\text{acc}} & 3q_{\text{acc}} & q_{\text{rej}} & q_{\text{acc}} \uparrow \\
\text{Left moves} & \quad & \quad & \quad & \quad \\
q_11 & q_121 & q_131 & q_1$1 & q_1 \uparrow 1 \\
\end{align*}

Rule 4:
\begin{align*}
1 & 2 & 3 & $ & \uparrow \\
\text{Copying} & \quad & \quad & \quad & \quad \\
1 & 2 & 3 & $ & \uparrow \\
\end{align*}

Rule 5:
\begin{align*}
\text{Separators} & \quad # & \quad # \\
& \quad # & \quad \uparrow # \\
\end{align*}

Rule 6:
\begin{align*}
1q_{\text{acc}} & q_{\text{acc}}1 & 2q_{\text{acc}} & q_{\text{acc}}2 & 3q_{\text{acc}} & q_{\text{acc}}3 & q_{\text{acc}} & q_{\text{acc}}$ & q_{\text{acc}} \uparrow \\
\text{Acceptors} & \quad q_{\text{acc}} & q_{\text{acc}} \\
\end{align*}

Rule 7:
\begin{align*}
q_{\text{acc}} & \quad # & \quad # \\
\text{Finisher} & \quad # \\
\end{align*}
Example TM

\[\Sigma = \{1, 2, 3\} \quad \Gamma = \{1, 2, 3, $, \sqcup\} \]

- \(\Gamma / $, R \) from \(q_0 \) to \(q_1 \)
- \(3 / 3, L \) from \(q_0 \) to \(q_{\text{acc}} \)
- \(1 / 2, R \) from \(q_1 \) to \(q_1 \)
- \(2 / 1, L \) from \(q_1 \) to \(q_{\text{acc}} \)
- \(\sqcup / 3, R \) from \(q_1 \) to \(q_{\text{rej}} \)
- \($ / $, R \) from \(q_{\text{acc}} \) to \(q_{\text{rej}} \)
- \(\Gamma / R \) from \(q_{\text{acc}} \) to \(q_{\text{acc}} \)
- \(\Gamma / R \) from \(q_{\text{rej}} \) to \(q_{\text{rej}} \)

Unlabeled transitions point to \(q_{\text{rej}} \)

Transitions out of \(q_{\text{acc}} \) and \(q_{\text{rej}} \) are never actually taken...
Examples

- On board. 〈M,3123〉 and 〈M,13〉
MPCP ≤ₘ PCP via g

1. g: input <P, t₁/b₁> where P is a PCP instance and t₁/b₁ ∈ P

□ if input is not in this form then print some string known not to be in PCP and halt

2. Assuming P={t₁/b₁, ..., tₖ/bₖ},
 let Q = { *t₁/∗b₁*, *t₁/b₁*, *t₂/b₂*,
 t₃/b₃,
 ⋮,
 tₖ/bₖ,
 +◊/◊ }

 where +, ◊ are not in Σ and
 *abc = +a+b+c (plusses before)
 abc* = a+b+c+ (plusses after)
 abc = +a+b+c+ (before & after)

3. Print <Q> and halt

different from textbook, where * and 5-pointed star are used
Purpose of construction

- Each domino has some + characters on the top
 - Only one of them has + as the first character on the top and bottom: the one that includes t_1 and b_1
- Starting with this domino $*t_1/*b_1*$, you end up with an excess of + characters on the bottom
 - The only one that can balance it is $+\diamond$/ \diamond
- Otherwise, the + characters line up between each character and don’t interfere
- The effect is that P contains a match starting with t_1/b_1 exactly when Q contains any match whatsoever (since any match in it must begin with $*t_1/*b_1*$)
- Hence $\text{MPCP} \leq_m \text{PCP via } g$
Landscape at end of Chapter 5

Each point is a language in this Venn diagram.