Picture so far

Each point is a language in this Venn diagram

\[\{0101, \varepsilon\} \]

\[0^* (101)^* \]

\[\text{ALL} \]
Where we are heading now...

Each point is a language in this Venn diagram

\[B = \{ 0^n 1^n \mid n \geq 0 \} \]
§1.4 Nonregular languages

- For each possible language L of strings over Σ,
 - $\emptyset \subseteq L$. So \emptyset is the smallest language. And \emptyset is regular
 - $L \subseteq \Sigma^*$. So Σ^* is the “largest” language of strings over Σ. And Σ^* is regular.

- Yet there are languages in between these two extremes that are not regular
A nonregular language

\[B = \{ 0^n 1^n \mid n \geq 0 \} \]
\[= \{ \varepsilon, 01, 0011, 000111, \ldots \} \]
is not regular.

- Why?
 - Q: how many bits of memory would a DFA need in order to recognize B?
 - A: there appears to be no single number of bits that's big enough to work for every element of B.
 - Remember, the DFA needs to reject all strings that are not in B.
Other examples

- $C = \{ w \in \{0,1\}^* \mid n_0(w) = n_1(w) \}$
 - Needs to count a potentially unbounded number of '0's... so nonregular

- $D = \{ w \in \{0,1\}^* \mid n_{01}(w) = n_{10}(w) \}$
 - Needs to count a potentially unbounded number of '01' substrings... so ??

- Need a technique for establishing nonregularity that is more formal and... less intuitive?
Proving nonregularity

- To prove that a language is nonregular, you have to show that no DFA whatsoever recognizes the language.
 - Not just the DFA that is your best effort at recognizing the language.
- The *pumping lemma* can be used to do that.
- The pumping lemma says that every regular language satisfies the "regular pumping property" (RPP).
 - Given this, if we can show that a language like B doesn't satisfy the RPP, then it's not regular.
 - $B = \{ 0^n \ 1^n \mid n \geq 0 \}$
Pumping lemma, informally

- Roughly: "if a regular language contains any 'long' strings, then it contains infinitely many strings"
- Start with a regular language and suppose that some DFA $M=(Q, \Sigma, \delta, q_0, F)$ for it has $|Q|=10$ states.
- What if M accepts some particular string s where $s=c_1c_2\cdots c_{15}$ so that $|s|=15$?
Pigeonhole principle

- With 15 input characters, the machine will visit at most 16 states
 - But there are only 10 states in this machine
 - So clearly it will visit at least one of its states more than once
- Let \(\text{rpt} \) be our name for the first state that is visited multiple times on that particular input \(s \)
- Let \(\text{acc} \) be our name for the accepting state that \(s \) leads to, namely, \(\delta^*(q_0, s) = \text{acc} \)
 - \(\delta^*(q, x) \) is the set of all states reachable in the machine after starting in state \(q \) and reading the entire string \(x \)
- Let \(y \) be our name for the leftmost substring of \(s \) for which \(\delta^*(\text{rpt}, y) = \text{rpt} \)
 - Since there are no \(\varepsilon \) transitions in a DFA, a state being "visited multiple times" means that it read at least one character. Therefore, \(|y| > 0 \)
sequence of states that M visits after reading the characters below

After reading $c_1 \cdots c_{10}$ (first 10 chars of s), M must have already been to state rpt and returned to it at least once... because there are only 10 states in M.

Of course the repetition could have been encountered earlier than 10 characters too...
sequence of states that M visits after reading the characters below

Assigning new names to the pieces of s...
sequence of states that M visits \textit{after} reading the characters below

Assigning new names to the pieces of s...

So $s = xyz$ as shown above.

With these names, the other constraints can be written

$|y| > 0$

$|xy| \leq 10$
M accepts other strings too

<table>
<thead>
<tr>
<th>q_0</th>
<th>?</th>
<th>...</th>
<th>rpt</th>
<th>?</th>
<th>...</th>
<th>rpt</th>
<th>?</th>
<th>...</th>
<th>acc</th>
</tr>
</thead>
<tbody>
<tr>
<td>s=</td>
<td>←</td>
<td>x</td>
<td>→</td>
<td>←</td>
<td>y</td>
<td>→</td>
<td>←</td>
<td>z</td>
<td>→</td>
</tr>
</tbody>
</table>

- Consider the string xz
M accepts other strings too

Consider the string xz

- $\delta^*(q_0, x) = \text{rpt}$
- $\delta^*(\text{rpt}, z) = \text{acc}$ (from previous slide)
- So $xz \in \mathcal{L}(M)$ too
M accepts other strings too

Consider the string $x\cdot y\cdot y\cdot z$

- $\delta^*(q_0,xy)=\text{rpt}$ (from 2 slides ago)
- $\delta^*(\text{rpt},y)=\text{rpt}$ (from same previous result)
- $\delta^*(\text{rpt},z)=\text{acc}$ (from same previous result)
- So $x\cdot y\cdot y\cdot z \in L(M)$ also

Apparently we can repeat y as many times as we want
p-regular-pumpable strings

- **Definition** (not in textbook) A string \(s \) is said to be *p-regular-pumpable in a language* \(L \subseteq \Sigma^* \) if there exist \(x,y,z \in \Sigma^* \) such that

 1. \(s = xyz \) ("\(x,y,z \) are a decomposition of \(s \)"")
 2. \(|y| > 0 \)
 3. \(|xy| \leq p \)
 4. For all \(i \geq 0 \),

 \[x y^i z \in L \] ("the \(y \) part of \(s \) can be pumped to produce other strings in the language")

- It follows that \(s \) must be a member of \(L \) for it to be \(p \)-pumpable

- The 15-character string \(s \) in the previous example was 10-regular-pumpable in \(L(M) \).

- Is \(s \) also 15-regular-pumpable?
p-regular-pumpable languages

- **Definition** A language L is *p-regular-pumpable* if
 - for every $s \in L$ such that $|s| \geq p$, the string s is p-pumpable in L
 - in other words, "every long enough string in L is pumpable"

- **Our previous example language** was 15-regular-pumpable
 - Is it also 10-regular-pumpable?
RPP(p) and RPP

- **Definition** RPP(p) is the class of languages that are p-regular-pumpable. In other words,
 \[RPP(p) = \{ L \subseteq \Sigma^* \mid L \text{ is p-regular-pumpable} \} \]

- **Definition** RPP is the class of languages that are p-regular pumpable for some p. In other words,
 \[RPP = \bigcup_{p=0}^{\infty} RPP(p) \]

- Lots of notation and apparent complexity, but the idea is simple: RPP is the class of languages in which every **sufficiently long** string is pumpable
Pumping lemma

Theorem 1.70 (rephrased) If $L \subseteq \Sigma^*$ is recognized by a p-state DFA, then $L \in \text{RPP}(p)$

Proof Just like our example, but use p instead of the constant 15 (or number of states = 10 in our example)

Corollaries
- $\text{REG} \subset \text{RPP}$
- If $L \notin \text{RPP}$ then $L \notin \text{REG}$.

[Add primary application of Pumping Lemma]
Proving a language nonregular

- First unravel these definitions, but it amounts to proving that L is not a member of RPP. Then it follows that L isn't regular.

- Proving that L isn't in RPP allows you to concentrate on the language rather than considering all possible proposed programs that might recognize it.
Unraveling RPP: a direct rephrasing

Rephrasing L is a member of RPP if

- There exists $p \geq 0$ such that
 - For every $s \in L$ satisfying $|s| \geq p$,
 - There exist $x, y, z \in \Sigma^*$ such that
 1. $s = xyz$
 2. $|y| > 0$
 3. $|xy| \leq p$
 4. For all $i \geq 0$, $x \cdot y^i \cdot z \in L$

(∃ p) (∀ s) (∃ x, y, z) (∀ i) !!!

Pretty complicated
Nonregularity proof by contradiction

Claim Let $B = \{ 0^n 1^n \mid n \geq 0 \}$. Then B is not regular.

Proof We show that B is not a member of RPP by contradiction.
So assume that $B \in \text{RPP}$ (and hope to reach a contradiction soon). Then there exists $p \geq 0$ associated with the definition in RPP.
We let $s = 0^p 1^p$. (Not the exact same variable as in the RPP property, but an example of one such possible setting of it.) Now we know that $s \in B$ because it has the right form.
Proof continued

Now $|s| = 2p \geq p$. By assumption that $B \in \text{RPP}$, there exist x,y,z such that

1. $s=xyz$ (= $0^p 1^p$, remember)
2. $|y| > 0$
3. $|xy| \leq p$
4. For all $i \geq 0$, $x \ y^i \ z \in B$

Part (3) implies that $xy \in 0^+$ because the first p-many characters of $s=xyz$ are all 0

- So y consists solely of '0' characters
- ... at least one of them, according to (2)
Proof continued

- But consider:
 - $s = xyz = xy^1z = 0^p 1^p$ (where we started)
 - y consists of one or more '0' characters
 - so xy^2z contains more '0' characters than '1' characters. In other words,
 - $xy^2z = 0^{p+|y|} 1^p$
 - so $xy^2z \not\in B = \{ 0^n 1^n | n \geq 0 \}$.

- This contradicts part (4)!!
- Since the contradiction followed merely from the assumption that $B \in \mathbb{RPP}$ (and right and meet and true reasoning about which we have no doubt), that assumption must be wrong

QED
Observations

- We needed (and got) a contradiction that was a necessary consequence of the assumption that $B \in \text{RPP}$ and then relied on the Theorem 1.70 corollaries.

- RPP mainly concerns strings that are longer than p.
 - So you should concentrate on strings longer than p...
 - Even though p is a variable. But clearly $|0^p1^p| > p$.

- In our example we didn't "do" much: after our initial choice of s and thinking about the implications we found a contradiction right away.
 - Many other choices of s would work, but many don't, and even some that do work require more complex arguments—for example, $s = 0^{[p/2]+1}1^{[p/2]+1}$.
 - Choosing s wisely is usually the most important thing.
Each point is a language in this Venn diagram

\[B = \{ 0^n 1^n \mid n \geq 0 \} \]