Chapter 1 Lecture Notes (Section 1.1: DFA’s)

David Martin
dm@cs.uml.edu

With some modifications by Prof. Karen Daniels, Fall 2012

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
Chapter 1: Regular Languages

- Simple model of computation
- Input a string, and either accept or reject it
 - Models a very simple type of function, a predicate on strings:
 \[f : \Sigma^* \rightarrow \{0,1\} \]
 - See example of a state-transition diagram
Syntax of DFA

A deterministic finite automaton (DFA) is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) such that

1. \(Q\) is a finite set of states
2. \(\Sigma\) ("sigma") is an alphabet (finite set)
3. \(\delta: Q \times \Sigma \to Q\) ("delta") is the transition function
4. \(q_0 \in Q\) ("q naught") is the start state
5. \(F \subseteq Q\) is the set of accepting states

Usually these names are used, but others are possible as long as the role is clear.
DFA syntax

- It is deterministic because for every input (q,c), the next state is a uniquely determined member of Q.
DFA computation

- This definition is different from but equivalent to the one in the text
- Let $\mathcal{M} = (Q, \Sigma, \delta, q_0, F)$ be a DFA. We define the extended transition function $\delta^*: Q \times \Sigma^* \rightarrow Q$ inductively as follows. For all $q \in Q$,
 \[\delta^*(q, \varepsilon) = q. \]
 If $w \in \Sigma^*$ and $c \in \Sigma$, let
 \[\delta^*(q, wc) = \delta(\delta^*(q, w), c) \]
- According to this definition, $\delta^*(q, x)$ is the state of the machine after starting in state q and reading the entire string x.
- See example
Measuring DFA space complexity

- Space complexity: the amount of memory used
 - But a DFA has no extra memory; it only remembers what state it is in
 - Can’t look back or forward
 - So a DFA always uses the same amount of memory, namely the amount of memory required to remember what state it’s in
 - Needs to remember current element of Q
 - Can write down that number in \(\log_2 |Q| \) bits
Language recognized by DFA

- The **language recognized by** the DFA M is written $L(M)$ and defined as $L(M) = \{ x \in \Sigma^* \mid \delta^*(q_0, x) \in F \}$

- Think of $L()$ as an operator that turns a program into the language it specifies.
 - We will use $L()$ for other types of machines and grammars too.

- Example 1.7, textbook p. 37
Example

Let \(L_2 = \{ x \in \{0,1\}^* \mid \text{either } x \text{ is the empty string, or the binary number } x \text{ is a multiple of 2} \} \) and build a DFA \(M_2 \) such that \(L(M_2) = L_2 \)

- Remember this means \(L(M_2) \subseteq L_2 \) and \(L_2 \subseteq L(M_2) \)

- This is Example 1.9 from textbook, p. 38
Definition of regular languages

- A language L is **regular** if there exists a DFA M such that $L = L(M)$.
- The **class of regular languages** over the alphabet Σ is called REG and defined:
 \[
 \text{REG} = \{ L \subseteq \Sigma^* \mid L \text{ is regular} \}
 \]
 \[
 = \{ L(M) \mid M \text{ is a DFA over } \Sigma \}
 \]
- Now we know 4 classes of languages: \emptyset, FIN, REG, and ALL (see Lecture 0).
Picture so far

Each point is a language in this Venn diagram

REG = L(DFA)

≠ FIN

"the class of languages generated by DFAs"

Proof that FIN ⊆ REG will come later after we introduce closure properties.

Is there a language out here?

"the class of languages generated by DFAs"
Problems

- For all $k \geq 1$, let $A_k = \{0^{kn} \mid n \geq 0\}$. Prove that $(\forall k \geq 1) A_k \in \text{REG}$

 - Solution is a scheme, not a single DFA

- (Harder) Build a DFA for $L_3 = \{x \in \{0,1\}^* \mid$ the binary number x is a multiple of 3 $\}$ similar to Example 1.13

- Build a DFA for $L_3' = \{x \in \{a,b\}^* \mid x$ does not contain 3 consecutive ‘b’s’$\}$

- Build a DFA for $L_4 = \{x \in \{a,b\}^* \mid x$ contains an odd # of ‘a’s and an even # of ‘b’s$\}$

 homework from 2009
Is REG reasonable?

- We should be able to combine computations as subroutines in simple ways
 - logical OR \((A \cup B)\) \(A \cup B = \{x \mid x \in A \text{ or } x \in B\}\) example
 - logical AND \((A \cap B)\) homework 2010
 - concatenation \((A \cdot B)\) and star \((A^*)\)
 - hard to prove!! motivation for NFA
 - complement \((A^c)\) Problem 1.14 in textbook
 - reversal \((A^R)\) homework 2010

- All above are easy to do as logic circuits
- \textit{Closure under these language operations}