Homework Set #1

Assigned: Wednesday, 9/3
Due: Monday, 9/8 (start of lecture)

This assignment covers textbook material in Chapter 0.
Note: Refer to course web site for homework policies.
Remember to attach signed honor statement.

1. (15 points) Set Descriptions:
 a) Create a set A of sets where $|A| = 3$ and this statement holds:
 $$(\forall x \in A)(\exists y \in A) \quad x \neq y \quad \text{and} \quad \left(|x| = |y| \Rightarrow \prod_{i \in x} i = \prod_{j \in y} j \right)$$

 b) Give an example of a set of sets that violates the statement in (a).

 c) Let $Z_n^* = \{[a]_n \in Z_n | \gcd(a, n) = 1\}$
 where $[a]_n$ is an equivalence class modulo n (i.e. $[a]_n = \{a + kn | \quad k \in Z\}$),
 and Z_n is the set of all such equivalence classes modulo n
 (i.e. $Z_n = \{[a]_n | \quad 0 \leq a \leq n-1\}$).
 As an example, $Z_6^* = \{[1]_6, [5]_6\}$
 I. List the elements of Z_{10}^*.
 II. Write a short, informal English description of Z_n^*.

2. (10 points) Propositional Logic: Create a truth table for the following logical expression:
 $$((P \rightarrow Q) \lor (Q \rightarrow P)) \land (\neg Q)$$

3. (15 points) Equivalence Relation: Let S be a finite set, and let R be an equivalence relation on S such that the domain of R is $S \times S$. Prove that if R is also anti-symmetric, then the equivalence classes of S with respect to R are singletons.

4. (60 points) Practicing Types of Proofs:
 a) Prove that if s and t are rational numbers and $t \neq 0$, then s/t is a rational number.

 b) Prove, by mathematical induction on n, that, for every natural number:
 $$1(1!) + \ldots + n(n!) = (n+1)! - 1$$
 That is, show that: $$\sum_{i=1}^{n} i(i!) = (n+1)! - 1.$$