Reducibility

prepared by John Sieg, UMass Lowell
content largely from Michael Sipser’s Introduction to
the Theory of Computation, second edition, Chapter 5

Overview

• Problem A is reducible to Problem B
 means that a solution to B can be used to
 solve A. (We’ll use the more precise term
 “mapping reducible” later.)
• If A is reducible to B and B is decidable,
 then A is decidable.
• If A is reducible to B and A is undecidable
 then B is undecidable.

Theorem 5.1: The (Real) Halting Problem

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that halts on input } w \} \]

Theorem 5.1: \(\text{HALT}_{TM} \) is undecidable.
proof: by contradiction. Assume there is a TM \(R \) that
decides \(\text{HALT}_{TM} \). Construct TM \(S \) to decide \(A_{TM} \) (from
Theorem 4.11):

\[S=\text{“On input } \langle M, w \rangle \text{”, where } M \text{ is encoding of a TM:
1. Run TM } R \text{ on input } \langle M, w \rangle
2. If } R \text{ rejects, reject.}
3. If } R \text{ accepts, simulate } M \text{ on } w \text{ until it halts.}
4. If } M \text{ has accepted, accept; otherwise reject.”}
“Reject inputs not of form \(\langle M, w \rangle \). Always do similar
checks.

Theorem 5.2

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Theorem 5.2: \(E_{TM} \) is undecidable.
proof: by contradiction. Assume there is a TM \(R \) that
decides \(E_{TM} \). Construct TM \(S \) to decide \(A_{TM} \).

Construct \(M_1 \) as follows:

\[M_1 =\text{“On input } x\text{:
1. If } x \neq w, \text{ reject.
2. If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does.”}

S=“On input \(\langle M,w \rangle \), where \(M \) is encoding of a TM:
1. Use description of \(M \) and \(w \) to construct \(M_r \).
2. Run \(R \) on input \(\langle M_r \rangle \)
3. If \(R \) accepts, reject; if \(R \) rejects, accept.”
Theorem 5.4

$EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$

Theorem 5.4: EQ_{TM} is undecidable.

Sketch of proof: by contradiction. Assume there is a TM R that decides EQ_{TM}. Construct TM S to decide E_{TM}.

S = “On input $\langle M \rangle$, where M is a TM:
1. Run R on input $\langle M, M_1 \rangle$, where M_1 is a TM that rejects all inputs.
2. If R accepts, accept; if R rejects, reject.”

Computation Histories

- A **computation history** is a sequence C_1, C_2, \ldots, C_m where C_1 is a start configuration and C_m is accept or reject configuration.
- Accepting computation histories vs. rejecting computation histories.
- Example: $q_{start}abc\, dq_2 bc\, deq_3 c\, defq_{accept}$

Linear Bounded Automata

- A **linear bounded automaton** is a TM which is not allowed to move off the portion of the tape holding the input. If it tries to move off the input portion, it stays put instead.
- You may choose the tape alphabet to be k times as large as the input alphabet, so the memory can be thought of as being k times as large as the input size.

```
 a b c b c
```

Lemma 5.8

Lemma 5.8: Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qng^n distinct configurations of M for a tape of length n.

Sketch of proof: There is a distinct configuration for each of q states, each of n R/W head positions, and each g^n possible strings on the tape.
Theorem 5.9

\[A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \]

Theorem 5.9: \(A_{LBA} \) is decidable.

proof: The following algorithm decides \(A_{LBA} \).

\[L = \text{"On input } \langle M, w \rangle, \text{ where } M \text{ is an LBA:} \]

1. Simulate \(M \) on \(w \) for \(q^n \) steps or until it halts.
2. If \(M \) has halted, accept if it has accepted and reject if it has rejected. If it has not halted, reject.”

Theorem 5.10

\[E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA and } L(M) = \emptyset \} \]

Theorem 5.10: \(E_{LBA} \) is undecidable.

sketch of proof: by contradiction. Assume there is a TM \(R \) that decides \(E_{LBA} \). Construct TM \(S \) to decide \(A_{TM} \).

Given \(\langle M, w \rangle \), a TM can construct another TM \(B \) that checks whether its input is an accepting computation history of \(M \) on \(w \):

\[
B \rightarrow \ldots \# \ x \ b_1 \ a \ b \# \ x \ x \ q_1 \ b \# \ldots
\]

Post Correspondence Problem

Given a set of dominoes

\[P = \left\{ \begin{bmatrix} t_1 \end{bmatrix}, \begin{bmatrix} t_2 \end{bmatrix}, \ldots, \begin{bmatrix} t_k \end{bmatrix} \right\} \]

is there a match, i.e., a sequence \(i_1, i_2, \ldots, i_m \) such that

\[t_1 \ t_2 \ \ldots \ t_m = b_{i_1} \ b_{i_2} \ \ldots \ b_{i_m} \]

Not all the dominoes need to be used. Dominoes may be used more than once.
Post Correspondence Problem Example

Given dominoes

\[P1 = \left\{ \frac{a}{bb} , \frac{a}{a} , \frac{bb}{cc} , \frac{ca}{a} \right\} \]

Here's a match:

\[\frac{a}{ab} \quad \frac{bb}{cc} \quad \frac{ca}{a} \]

Theorem 5.15

\[PCP = \{ (P) \mid P \text{ is an instance of the Post correspondence problem with a match} \} \]

Theorem 5.15: \(PCP \) is undecidable.

Sketch of proof: by contradiction

Show that \(A_{TM} \) can be reduced to \(PCP \).

Show first that \(A_{TM} \) can be reduced to \(MP_{PCP} \),
where \(MP_{PCP} \) is like \(PCP \), except that a specific tile is required to be first.

It's then easy to show map a solution \(P \) of \(MP_{PCP} \)
on to a solution \(P \) of \(PCP \) (omitted here).

Theorem 5.15, cont'd

Given \(M = (Q, \Sigma, I, \delta, q_{accept}, q_{reject}) \) and

\(w = w_1 \ldots w_n \) to "simulate" \(A_{TM} \) on \((M, w) \):

Part 1: Put \(\frac{\#}{\#q_0w_1w_2\ldots w_n\#} \) in \(P' \) as the
domino that must occur first in any match.

Part 2: For every \(a, b \in I \) and every \(q, r \in Q \) where \(q \neq q_{reject} \),
if \(\delta(q, a) = (r, b, L) \), put \(\frac{ca}{ar} \) into \(P' \).

Part 3: For every \(a, b, c \in I \) and every \(q, r \in Q \) where \(q \neq q_{reject} \),
if \(\delta(q, a) = (r, b, L) \), put \(\frac{ca}{ar} \) into \(P' \).

Part 4: For every \(a \in I \) put \(\frac{a}{a} \) into \(P' \).

Part 5: Put \(\frac{\#}{\#} \) and \(\frac{\#}{\#} \) into \(P' \).
Theorem 5.15, cont’d

Part 6: For every $a \in \Gamma$
put $\left[\begin{array}{c} a \text{ Accept} \\ \text{Accept} \end{array} \right]$ and $\left[\begin{array}{c} \text{Accept} a \\ \text{Accept} \end{array} \right]$ into \mathcal{P}.

Part 7: Put $\left[\begin{array}{c} \text{Accept} \\ \# \# \end{array} \right]$ into \mathcal{P}.

Now we must argue that the resulting MPCP has a match iff M accepts w (omitted here).

Computable Functions

Definition 5.17: A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if some TM M, on every input w, halts with just $f(w)$ on its tape.

Ex. $f(n) = n+1$, $f\langle \langle n, m \rangle \rangle = n+m$, $f\langle \langle n, m \rangle \rangle = n \mod m$

Ex. $f\langle \langle M \rangle \rangle = M$ where M is a non-deterministic TM and M' is the equivalent deterministic TM generated by construction in Theorem 3.16.

Ex. $f\langle \langle M, w \rangle \rangle = B$, the LBA of Theorem 5.10 that checks whether its input is an accepting computation history of M on w

Formalizing Reducibility

Definition 5.20: Language A is **mapping reducible** (**many-one reducible**) to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every s,
\[s \in A \text{ iff } f(s) \in B. \]

The function f is called a **reduction** of A to B.

More About Mapping Reducibility

Theorem 5.22: If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary 5.23: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Theorem 5.28: If $A \leq_m B$ and B is Turing-recognizable, then A is Turing-recognizable.

Corollary 5.23: If $A \leq_m B$ and A is not Turing-recognizable, then B is not Turing-recognizable.
Theorem 5.22

Theorem 5.22: If \(A \leq_m B \) and \(B \) is decidable, then \(A \) is decidable.

![Diagram]

To decide whether \(s \in A \), compute \(f(A) \) and check whether \(f(A) \in B \). Here is a decider for \(B \), given a decider \(M_A \) for \(A \):

\[
M_B = \text{"On input } s:\n\begin{enumerate}
\item Compute } f(A); \\
\item Run } M_A \text{ on } f(A) \text{ and output whatever } M_A \text{ outputs."}
\]

Example 5.24

Theorem 5.1 used a reduction \(f \) from \(A_{TM} \) to \(HALT_{TM} \). In that theorem’s proof, it was claimed that a decider for \(HALT_{TM} \) could be used to build a decider for \(A_{TM} \).

Formally, we must show \(A_{TM} \leq_m HALT_{TM} \).
Then we can apply Corollary 5.23.

Example 5.24, cont’d

\(A_{TM} \leq_m HALT_{TM} ? \)
This machine \(F \) computes a reduction \(f : \)
\[
F = \text{"On input } \langle M, w \rangle * \text{, where } M \text{ is a TM:} \\
1. Construct the following machine } M':\n\begin{enumerate}
\item \text{"On input } x:\n\begin{enumerate}
\item Run } M \text{ on } x. \\
\item If } M \text{ accepts, accept.} \\
\item If } M \text{ rejects, enter a loop."}
\end{enumerate}
\item Output } \langle M', w \rangle ." \\
*Reject inputs not of form } \langle M, w \rangle .
\]

Example 5.24, cont’d

More formal proof of Theorem 5.1:

We show \(HALT_{TM} \) is undecidable by reducing a known undecidable problem to it. Specifically, we show that \(A_{TM} \leq_m HALT_{TM} \).

This machine \(F \) computes a reduction \(f : \)
\[
F = \text{"See previous slide. } >> \\
\text{Now show that } s \in A_{TM} \text{ iff } f(s) \in HALT_{TM} .
\]
This means that \(s \) (the input of \(F \)) is of form \(\langle M, w \rangle \) where \(M \) accepts \(s \) iff \(f(s) \) (the output of \(F \)) is of form \(\langle M', w \rangle \) where \(M' \) halts on \(w \). Obvious.
Example 5.25

The proof of Theorem 5.15 used two reductions:
\[A_{TM} \leq_m MPCP \text{ and } MPCP \leq_m PCP. \] Because \(\leq_m \) is transitive, we have \(A_{TM} \leq_m PCP \).

What is the reduction \(f \) for \(A_{TM} \leq_m MPCP \)?

\(f \) maps each \(\langle M, w \rangle \) onto a set of dominoes as described in the proof.

Example 5.27

Theorem 5.2 used a reduction \(f \) from \(A_{TM} \) to \(E_{TM} \).

\(f \) sends each \(\langle M, w \rangle \) to a \(M' \) such that \(M \) accepts \(w \) iff \(M' \) does not recognize \(\emptyset \), i.e., \(M' \notin E_{TM} \). Function \(f \) is computed by TM \(S \) given in the proof of theorem 5.2.

Thus \(\overline{E_{TM}} \) is undecidable. Decidability is closed under complementation, so \(E_{TM} \) is also undecidable.

Rice’s Theorem
(Exercise 5.28)

Rice’s Theorem: Let \(P \) be a language consisting of TM descriptions such that

- \(P \) is non-trivial, i.e., it contains some but not all TM descriptions
- \(P \) is a property of the TM’s language, i.e., if \(L(M_1) = L(M_2) \), then \(\langle M_1 \rangle \in P \) iff \(\langle M_2 \rangle \in P \)

\(P \) is undecidable.

Consequences of Rice’s Theorem

Every non-trivial property of TM’s is undecidable, including:

- Is \(\epsilon \in L(M) \)?
- Is \(s \in L(M) \) for a given string?
- Is \(L(M) \) infinite?
- Is \(L(M) \) regular?

But don’t use Rice’s Theorem in homework or quizzes unless directed to do so!