Database Security

SQL Security

• Discretionary - privileges are granted:
 GRANT <privilege_list>
 ON <object>
 TO <user_list>
 [WITH GRANT OPTION]

• Privileges are SELECT, INSERT(col), UPDATE(col), DELETE, REFERENCES(col)

SQL Example 1

GRANT SELECT
ON Student
To Larry
WITH GRANT OPTION

SQL Example 2

GRANT INSERT
ON Student (Sid),
 Student (Sname)
To Larry
SQL Revoke Statement

REVOKE [GRANT OPTION FOR] <privilege_list> ON <object>
FROM <user_list> [CASCADE|RESTRICT]

SQL Example 3

REVOKE SELECT ON Student FROM Larry CASCADE

If Larry granted SELECT on Student to Moe, Moe also loses the privilege (usually).

SQL Example 4

REVOKE SELECT ON Student FROM Larry RESTRICT

If Larry granted SELECT on Student to Moe, command is rejected (usually).

SQL Example 5

Larry:
GRANT REFERENCES ON Student(Sid) TO Moe

• Moe can create a relation schema with a foreign key referencing Sid in Student (not possible with just SELECT privilege).
• Moe can prevent Larry from deleting Student tuples (NO ACTION referential integrity).
Roles

- Introduced in the SQL:1999 standard, but implemented in many database systems before that.
- Privileges can be granted and revoked to roles.
- Users can be granted and revoked roles, receiving the privileges of the roles.
- The role can be granted to and revoked from, affecting all users granted that role.

Role Example

```sql
CREATE ROLE dbstudent;
GRANT select ON student TO dbstudent;
GRANT insert ON student(sname) TO dbstudent;
GRANT dbstudent TO curly, shemp, moe;
REVOKE insert ON student(sname) FROM dbstudent;
(All users in dbstudent role lose INSERT privilege on student.)
```

Discretionary Security Subject to Trojan Horses

GoodGuy

- GRANT Insert ON myTable(...) TO goodGuy
- When GoodGuy runs CoolToolTH.exe, it inserts GoodGuy.SecretTable tuples into BadGuy.myTable.

Mandatory Access Control

- An Alternative to Discretionary Access Control, which is subject to Trojan Horses, et al.
- Not Supported in SQL
- The Bell-LaPadula Model has security classes: TS > S > C > U
Mandatory Access Control, cont’d

• Subject \(S \) can read object \(O \) only if \(\text{class}(S) \geq \text{class}(O) \)

• Subject \(S \) can write object \(O \) only if \(\text{class}(S) \leq \text{class}(O) \)

Statistical Databases

• Idea: Allow collecting statistics over private data without access to individual records.

• Allow

 \[
 \text{SELECT avg(GPA) FROM STUDENT}
 \]

• Do not allow

 \[
 \text{SELECT avg(GPA) FROM STUDENT WHERE sname = “Larry”}
 \]

• So disallow queries that operate on one record.

• But:

 \[
 \begin{align*}
 \text{SELECT count(*) FROM STUDENT; } \\
 \text{SELECT count(*) FROM STUDENT WHERE sname <> “Larry”; } \\
 \text{SELECT sum(GPA) FROM STUDENT; } \\
 \text{SELECT sum(GPA) FROM STUDENT WHERE sname <> “Larry”; }
 \end{align*}
 \]

• So disallow queries that operate on entire relations

• But:

 \[
 \begin{align*}
 \text{SELECT count(*) FROM STUDENT WHERE SEX =”f”; } \\
 \text{SELECT count(*) FROM STUDENT WHERE sname =”Larry” OR SEX =”f”; } \\
 \text{SELECT sum(GPA) FROM STUDENT WHERE SEX =”f”; } \\
 \text{SELECT sum(GPA) FROM STUDENT WHERE sname =”Larry” OR SEX =”f”; }
 \end{align*}
 \]
Public Key Encryption

- P a public key, p a private key, E an encryption function such that
 - $E(p, E(P, M)) = M$
 - $E(P, E(p, M)) = M$

John Sieg, UMass Lowell

Encrypted

- JS is my public key, js my private key
- B is Bill’s public key, b his private key
- I encrypt message M for Bill: $E(B, M)$ and send result M' to Bill.
- Bill decrypts: $E(b, M') = E(b, E(B,M)) = M$

John Sieg, UMass Lowell

Signing

- But Bill may wonder: Perhaps Ken sent this message, not me.
- So instead I send the message:
 $E(B,(E(js,M) \oplus \text{“It’s me, your pal John.”})))$
- Bill applies b:
 $E(b, E(B,(E(js,M) \oplus \text{“It’s me, your pal John.”}))) = E(js,M) \oplus \text{“It’s me, your pal John.”}$
- Bill then applies JS: $E(JS, E(js,M)) = M$

John Sieg, UMass Lowell

Conclusions

- Security enforcement often compromises access (and security!)
- Good security mechanisms are available, but are usually not taken seriously.
- Political concerns (encryption concerns in USA) and commercial concerns (software registration by Microsoft, anti-copy rootkits by Sony) defeat some attempts at security.