Exam Time: 1h & 15m. Each problem is worth 10 points. 50 pts total. Choose any 5 problems.

1. **Regular Expressions and Nondeterministic Finite Automata.**

a) Give a regular expression for the set of all strings over $\Sigma = \{0,1\}$ having an odd number of zeros.

 b) Construct an NFA that recognizing the language defined by this regular expression. Use the labeled digraph method.

 Hints: The regular expression is $1^*01^*(01^*01^*)^*$. For the construction: start with two vertices, say s and f and an arrow connecting them, labeled by the RE:
Let \(\{p_0, p_1, p_2, p_3\} \) be the states of the first automaton, \(\{q_0, q_1, q_2, q_3\} \) those of the second. The product automaton will have states \(\{(p_i, q_j) \mid 0 \leq i \leq 3, 0 \leq j \leq 3\} \), \(F = F_p \times F_q = \{[p_3, q_0], [p_3, q_1], [p_3, q_2]\} \). The transition function can be read off the two automata, the start state is \([p_0, q_0]\).

3. **NFA to DFA.** Given the NFA:

![NFA Diagram]

convert it into an equivalent DFA, showing all intermediate steps.

Hints: Textbook, Section 2.4. REMEMBER you must always include the results of the \(\epsilon \)-transitions.

4. **Myhill-Nerode Theorem.**
 a) Define the relation \(R_L \) used by the theorem.
 b) Find all equivalence classes of \(R_L \) for the language \(\{x \in \{0,1\}^* \mid \#_0(x) \neq \#_1(x)\} \), where \(\#_a(w) \) is the number of occurrences of the symbol \(a \) in \(w \).
 c) What does the Myhill-Nerode theorem tell you about this language and why? Hint: you may need to quote the theorem...
Hints: a) Text, p. 70.: for any language \(L \subseteq \Sigma^* \), a relation \(R_L \) on \(\Sigma^* \):

\[
x R_L y \iff (\forall w)[xw \in L \iff yw \in L]
\]

b) Equivalence classes: \([x]_{R_L} = \{ \text{all those strings such that the difference between the number of zeros and of ones is the same as that of } x \} \). For any two strings \(x, y \) for which this difference is NOT the same, there exists a suffix string such \(w \) that \(xw \in L \) and \(yw \) is not in \(L \). Since the difference can be \(0, \pm 1, \pm 2, \ldots \), the number of such classes is infinite.

c) Since the Myhill-Nerode Theorem asserts that a language \(L \) is regular if and only if \(R_L \) partitions \(\Sigma^* \) into a finite number of equivalence classes, the language in question is not regular.

5. Language Properties. Define the complementary or \(\text{cor} \) of two languages by

\[
\text{cor}(L_1, L_2) = \{ w : w \in \bar{L}_1 \text{ or } w \in \bar{L}_2 \}.
\]

Prove that the family of regular languages is closed under the \(\text{cor} \) operation.

Hints: \(\bar{L}_1 \cup \bar{L}_2 = \bar{L}_1 \cap L_2 \). The result follow immediately from the prior results: the complement of a regular language is regular; the intersection (union) of two regular languages is regular.

6. Minimum DFAs. You are given the NFA

\[
\begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array}
\]

Construct a minimum DFA equivalent to it. Explain the construction.

Hints: this corresponds to the language \(\{ a^* b^* c^* \} \).

\(R_L \) has the following classes: \([a]_{R_L} \) which consists of all the strings of the form \(a^* \); \([b]_{R_L} \) which consists of all strings of the form \(a^* b^+ \); \([c]_{R_L} \) which consists of all strings of the form \(a^* b^+ c^+ \). The remaining class is that of all those strings that do not belong to one of the three classes already identified. We need to show that any strings \(x \) and \(y \) not belonging to one of the three classes satisfy \(x R_L y \). We observe that any such string \(x \) must have either an \(a \) following a \(b \), or an \(a \) following a \(c \) or a \(b \) following a \(c \). In any such case there is no suffix that will produce a string of \(L \), so \(xw \in L \iff yw \in L \) since neither can ever be in \(L \).

\(\text{Index}(R_L) = 4 \), and the minimum DFA has 4 states. Any four state DFA that accepts the language is minimal: for example