1. **4.3-1.** Show that the solution of \(T(n) = T(n - 1) + n \) is \(O(n^2) \)

2. **4.3-3.** We saw that the solution of \(T(n) = 2T([n/2]) + n \) is \((n \log n) \). Show that the solution of this recurrence is also \(\Omega(n \log n) \). Conclude that the solution is \(\Theta(n \log n) \).

3. **4.4-5.** Use a recursion tree to determine a good asymptotic upper bound on the recurrence \(T(n) = T(n - 1) + T(n/2) + n \). Use the substitution method to verify your answer.

4. **4.4-8.** Use a recursion tree to give an asymptotically tight solution to the recurrence \(T(n) = T(n - a) + T(a) + cnm \) where \(a \geq 1 \) and \(c > 0 \) are constants.

5. **4.5-2.** Prof. Caesar wishes to develop a matrix multiplication algorithm that is asymptotically faster than Strassen’s algorithm. His algorithm uses the divide-and-conquer method, dividing each matrix into pieces of size \(n/4 \times n/4 \), and the divide and combine steps together will take \(\Theta(n^2) \) time. He needs to determine how many subproblems his algorithm has to create in order to beat Strassen’s algorithm. If his algorithm creates \(a \) subproblems, then the recurrence for the running time \(T(n) \) becomes \(T(n) = aT(n/4) + \Theta(n^2) \). What is the largest integer value of \(a \) for which Professor Caesar’s algorithm would be asymptotically faster than Strassen’s algorithm?

6. **4.5-4.** Can the master method be applied to the recurrence \(T(n) = 4T(n/2) + n^2 \log n \)? Why or why not? Give an asymptotic upper bound for this recurrence.

7. **4-3.** Give asymptotic upper and lower bounds. Assume \(T(n) \) constant for small \(n \). Make your bound tight and justify your answers.
 - b) \(T(n) = 3T(n/3) + n/\log n. \)
 - d) \(T(n) = 3T(n/3 - 2) + n/2. \)
 - f) \(T(n) = T(n/2) + T(n/4) + T(n/8) + n. \)
 - h) \(T(n) = T(n - 1) + \log n. \)