Chapter 5 Lecture

Randomized Algorithms

Sections 5.1 – 5.3

source: 91.404 textbook Cormen et al.

Analyzing the Hiring Problem

- Worst-Case Analysis:
 - Hire every candidate interviewed
 - How can this occur?
 - If candidates come in increasing quality order
 - Hire n times: total hiring cost = \(O(n\cdot c_0)\)
 - Probabilistic Analysis:
 - Appropriate if information about random distribution of inputs is known
 - Use a random variable to represent cost (or run-time)
 - Find expected (average) cost (or run-time) over all inputs
 - We’ll use this technique to analyze hiring cost...
 - First need to introduce indicator random variables to simplify analysis

Indicator Random Variables

- Indicator random variable \(I\{A\}\) associated with event \(A\):
 \[
 I\{A\} = \begin{cases} 1 & \text{if } A \text{ occurs} \\ 0 & \text{if } A \text{ does not occur} \end{cases}
 \]
- Example: Find expected number of heads when flipping a fair coin
 - Sample space \(S = \{H, T\}\)
 - Random variable \(Y\) takes on values \(H, T\)
 - \(\text{Prob}(H) = \text{Prob}(T) = 1/2\)
 - \(X_n\) counts number of heads in a single flip
 - Expected number of heads in a single coin flip = expected value of \(X_n\)

\[
E[X_n] = E[I\{Y = H\}] = 1 \cdot \text{Pr}(Y = H) + 0 \cdot \text{Pr}(Y = T) = 1 \cdot \left(\frac{1}{2}\right) + 0 \cdot \left(\frac{1}{2}\right) = \frac{1}{2}
\]
Analyzing the Hiring Problem using Indicator Random Variables (continued)

- Assume candidates arrive in random order
- \(X = \) random variable modeling number of times we hire
- Without indicator random variables:
 \[
 E[X] = \sum_{x \in \{0, 1, \ldots, n\}} x \Pr(X = x)
 \]
- With indicator random variables:
 \[
 X = X_1 + X_2 + \cdots + X_n
 \]
 \[
 X_i = I\{\text{candidate } i \text{ is hired}\} = \begin{cases} 1 & \text{if candidate } i \text{ is hired} \\ 0 & \text{if candidate } i \text{ is not hired} \end{cases}
 \]

Need to find \(E[X] \) and \(E[X_i] = \Pr\{\text{candidate } i \text{ is hired}\} \) by Lemma 5.1

Analyzing the Hiring Problem using Indicator Random Variables

- Candidate 0 is a least-qualified dummy candidate
- Randomness assumption: any of first \(i \) candidates is equally likely to be best-qualified to be
- Candidate is better than probability of \(1/i \) of being better than each of candidates 1...\(i \)
- Probability candidate \(i \) will be hired is therefore \(1/i \)

\[
E[X_i] = \Pr\{\text{candidate } i \text{ is hired}\} = 1/i
\]

Analyzing the Hiring Problem using Indicator Random Variables (continued)

- \(HIRE-ASSISTANT(n) \)
 - best ← 0
 - for \(i \leftarrow 1 \) to \(n \)
 - do interview candidate \(i \)
 - if candidate \(i \) is better than candidate best
 - then best ← \(i \)
 - hire candidate \(i \)
 - Need to calculate probability that these lines are executed

\[
E[X] = \sum_{i=1}^{n} \Pr\{\text{candidate } i \text{ is hired}\} = \ln n + O(1)
\]
And now for something different...

- **Randomized Algorithm**
 - Put randomness into algorithm itself
 - Make choices randomly (e.g., using coin flips)
 - Use pseudorandom-number generator
 - Algorithm itself behaves randomly
 - Different from using probabilistic assumptions about inputs to analyze average-case behavior of a deterministic (non-random) algorithm
 - Randomized algorithms are often easy to design & implement & can be very useful in practice

Nothing is ever really free...

Randomized Hiring Algorithm

RANDOMIZED-HIRE-ASSISTANT(n)

randomly permute the list of candidates

- `best ← 0` \(\triangleright\) candidate 0 is a least-qualified dummy candidate
- for \(i ← 1\) to \(n\)
 - do interview candidate \(i\)
 - if candidate \(i\) is better than candidate `best`
 - then `best ← i`
 - hire candidate `i`

Goal: randomly permute the list of candidates

Represent an input using candidate ranks: \(\{\text{rank}(1), \text{rank}(2), \ldots, \text{rank}(n)\}\)

Randomly permuting candidate list creates a random list of candidate ranks.

This step dominates the running time. It takes \(\Omega(n)\) time if pairs of values are computed while sorting.

Now we need to show that PERMUTE-BY-SORTING produces a uniform random permutation of the input, assuming all priorities are distinct.

Randomized Permutation Algorithm

Approach: assign each element \(A[i]\) a random priority \(P[i]\)

PERMUTE-BY-SORTING(A)

- \(n ← \text{length}(A)\)
- for \(i ← 1\) to \(n\)
 - do \(P[i] ← \text{RANDOM}(1, n)^{\text{distinct}}\)
 - sort \(A\), using \(P\) as sort keys
- return \(A\)

Choose a random number between 1 and \(n\) (inclusive) that all priorities are unique.

This also demonstrates the running time. It takes \(\Omega(n)\) time if pairs of values are computed while sorting.
Randomized Permutation
Algorithm Analysis

Claim: PERMUTE-BY-SORTING produces a uniform random permutation of the input, assuming all priorities are distinct.

Proof Sketch: Consider perm. in which each $A[i]$ has ith smallest priority. To show this permutation occurs with probability $1/n!$...

Let X_i be event that element $A[i]$ receives ith smallest priority.

Probability that, for all i, event X_i occurs is:

$$
\Pr\{X_1 \cap X_2 \cap X_3 \cap \ldots \cap X_{n-1} \cap X_n\} = \Pr\{X_1\} \cdot \Pr\{X_2 \mid X_1\} \cdot \Pr\{X_3 \mid X_2 \cap X_1\} \ldots \Pr\{X_n \mid X_{n-1} \cap \ldots \cap X_1\}
$$

$$
\Pr\{X_1 \cap X_2 \cap X_3 \cap \ldots \cap X_{n-1} \cap X_n\} = \frac{1}{n!} \cdot \frac{1}{n-1} \cdot \frac{1}{2} \cdot \frac{1}{1} = \frac{1}{n!}
$$

To complete the proof, now apply the argument above to any fixed permutation of $\{1, 2, \ldots, n\}$: $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(n))$

Randomized Permutation
Algorithm Improvement

Algorithm Improvement:

Randomized Permutation

Algorithm Analysis

Randomized Permutation

Algorithm Improvement

Invariant:

Just prior to the ith iteration of the for loop, for each possible $(i - 1)$-permutation, the subarray $A[1..i-1]$ contains this $(i-1)$-permutation with probability $(n - i + 1)/n!$

Initialization: $i = 1$.

For each possible 0-permutation, $A[1..0]$ contains this 0-permutation with probability $(n - i + 1)/n! = n!/n! = 1$. Follows from the fact that $A[0..1]$ is empty and the 0-permutation has no elements.

Termination: $i = n + 1$.

The subarray $A[1..n]$ contains a given n-permutation with probability $(n - n)/n! = 0/n! = 1/n!$.

Maintenance (the hard part):

Induction Assumption: Just prior to the ith iteration of the for loop, each possible $(i-1)$-permutation appears in the subarray $A[1..i-1]$ with probability $(n - i + 1)/n!$.

Proof: After the i^{th} iteration of the for loop, each possible i-permutation appears in $A[1..i]$ with probability $(n - i + 1)/n!$.

Proof: Start from the induction assumption. After the i^{th} iteration, $A[1..i]$ will contain a permutation (x_1, \ldots, x_i) followed by the value x_{i+1} placed by the algorithm in $A[i]$. Let E_i denote the event "the first i iterations have created a particular $(i-1)$-permutation (x_1, \ldots, x_{i-1}) in $A[1..i-1]$." By the induction assumption (loop invariant), $\Pr(E_i) = (n - i + 1)/n!$. Let E_{i+1} denote the event "the i^{th} iteration puts x_{i+1} in position $A[i]$." But (x_1, \ldots, x_i) occurs in $A[1..i]$ exactly when both E_i and E_{i+1} occur: we need to compute $\Pr(E_i \cap E_{i+1})$.

Randomized Permutation

Algorithm Improvement
Randomized Permutation Algorithm Improvement

Maintenance (the hard part 2):

Proof: $Pr(E_1 \cap E_2) = ???.$
$Pr(E_1 \cap E_2) = Pr(E_2 \mid E_1) \cdot Pr(E_1)$, by definition of conditional probability.
$Pr(E_2 \mid E_1) = 1/(n-i+1)$ since i is chosen randomly from the $(n-i+1)$ positions in $A[i..n]$.
We have:

$Pr(E_1 \cap E_2) = Pr(E_2 \mid E_1) \cdot Pr(E_1) = 1/(n-i+1) \cdot (n-i+1)!/n! = (n-i)!/n!$