4.2)

Let $E_{\text{DFA,REX}} = \{<A,R> | A \text{ is a DFA, } R \text{ is a regular expression and } L(A) = L(R)\}$. The following TM E decides $E_{\text{DFA,REX}}$.

$E = \text{"On input } <A,R>:\text{\ "}
 1. Convert regular expression R to an equivalent DFA B.
 • Use the method of Lemma 1.55 to convert R to an NFA N
 • Use the method of Theorem 1.39 to convert N to a DFA B
 2. Use TM C of Theorem 4.5 for deciding E_{DFA} on input $<A,B>$.
 3. If C accepts, accept. If C rejects, reject.”

Explanation:
The trick here is simple—convert R to a DFA and use the decider for E_{DFA} to decide $E_{\text{DFA,REX}}$.

4.3)

Let $\text{ALL}_{\text{DFA}} = \{<A> | A \text{ is a DFA that recognizes } \sum^* \}$. The following TM L decides ALL_{DFA}.

$L = \text{"On input } <A> \text{ where } A \text{ is a DFA:}\text{\ "}
 1. Construct DFA B that recognizes the complement of $L(A)$ as described in Exercise 1.14a.
 4. Run TM T of Theorem 4.4 on input $$, where T decides E_{DFA}.
 5. If T accepts, accept. If T rejects, reject.”

Explanation:
The complement of \sum^* is \emptyset, the empty language. Not to be confused with ε, the empty string, which is in $L(A) = \sum^*$.

4.4)

Let $A_{\varepsilon_{\text{CFG}}} = \{<G> | G \text{ is a CFG that generates } \varepsilon \}$. The following TM V decides $A_{\varepsilon_{\text{CFG}}}$.

$V = \text{"On input } <G> \text{ where } G \text{ is a CFG:} \text{\ "}$
1. Run TM S from Theorem 4.7 on input $<G, \varepsilon>$, where S is a decider for A_{CFG}.
 2. If S accepts, accept. If S rejects, reject.”

Another equally good solution was provided by some students:
1. Convert G to Chomsky Normal Form.
2. If G has the rule $S \rightarrow \varepsilon$, then accept, else reject.