Asymptotic Notations

Text
Chapters 3

Asymptotic Notation

- What does “the order of” mean
- Big O, Ω, and Θ notations
- Properties of asymptotic notation
- Limit rule
A notation for “the order of”

- We’d like to measure the efficiency of an algorithm
 - Determine mathematically the resources needed
- There is no such a computer which we can refer to as a standard to measure computing time
- We introduce “asymptotic” notation
 - An asymptotically superior algorithm is often preferable even on instances of moderate size

Definition of big O

\[O(g(n)) = \{ f(n) | (\exists c \in R^+, n_0 \in N)(\forall n \geq n_0)[0 \leq f(n) \leq cg(n)] \} \]

- Typically used for *asymptotic upper bound*
- Attention
 - \(O(f(n)) \) is a *set* of functions
- Pitfall
 - Traditionally we say \(n^2 \in O(n^2) \) as used in our text book
 - It really means \(n^2 = O(n^2) \)
A graphical view of asymptotic definition

Example

Prove that following statements

\[13n^2 + n + 5 \in O(n^2) \]
\[13n^2 + n + 5 \in O(n^2 \log n) \]
\[f(n) \in O(n) \Rightarrow f^2(n) \in O(n^2) \]
\[O(n) \subseteq O(n^2) \]
What are \(c \) and \(n_0 \)?

Several notations

- Logarithm time \(O(\log n) \)
- Linear time \(O(n) \)
- Quadratic time \(O(n^2) \)
- Cubic time \(O(n^3) \)
- Exponential time \(O(c^n), \ c > 1 \)

\[
O(\log n) \subset O(n^\varepsilon) \subset O(n^\varepsilon \log n) \subset O(n^{\varepsilon+\varepsilon} \log n) \subset O(d^n) \quad \text{for} \quad c, \varepsilon > 0, d > 1
\]

- Order of growth
The Maximum rule

Let \(f, g : N \to R_{\geq 0} \),
then \(O(f(n) + g(n)) = O(\max(f(n), g(n))) \)

Proof
• the key is \(\max(f(n), g(n)) \leq f(n) + g(n) \leq 2\max(f(n), g(n)) \)

Examples
• \(O(12n^3 - 5n + n\log n + 36) \)
• The maximum rule let us ignore lower-order terms

Example

True or false
• \(? \ 5 = O(\log n) \)
• \(? \ \log n = O(5) \)
• \(? \ n = O(n^{0.6}\log n) \)
• \(? \ n^{0.6}\log n = O(n) \)
• \(? \ n^8 = O((n^2 - 3n + 5)^4) \)
Definition of \(\Omega \)

\[\Omega(g(n)) = \{ f(n) \mid (\exists c \in \mathbb{R}^+, n_o \in \mathbb{N})(\forall n \geq n_o)[f(n) \geq cg(n) \geq 0] \} \]

- \(\Omega \) is typically used to describe *asymptotic lower bound*
 - For example, insertion sort take time in \(\Omega(n) \)
- \(\Omega \) for algorithm complexity
 - We use it to give the lower bounds on the intrinsic difficulty of solving problems
 - Example, any comparison-based sorting algorithm takes time \(\Omega(n\log n) \)

Example of \(\Omega(n^2) \)

- \(n^2 \)
- \(n^2 + n \)
- \(n^2 - n \)
- \(n^{2.0001} \)
- \(n^2 \log n \)
- \(2^n \)
The Θ notation

Definition:

$$\Theta(g(n)) = \{ f(n) \mid (\exists c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N})(\forall n \geq n_0)[0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)] \}$$

Equivalent to:

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

- Used to describe *asymptotically tight bound*
- Example: selection sort take time in $\Theta(n^2)$

The Limit Rule

- Let $f, g : \mathbb{N} \to \mathbb{R}^+$, then

 1. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} \in \mathbb{R}^+$ then $f(n) \in \Theta(g(n))$
 2. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ then $f(n) \in O(g(n))$ but $f(n) \not\in \Omega(g(n))$
 3. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = +\infty$ then $f(n) \in \Omega(g(n))$ but $f(n) \not\in O(g(n))$
Example

\[(n^c)' = cn^{c-1}\]

\[
(ln n)' = \frac{1}{n}
\]

(\(ln\) n means \(\log_{e}n\), the text use log)

When \(c > 0\)

\[
\lim_{n \to \infty} \frac{\ln n}{n^c} = \lim_{n \to \infty} \frac{(\ln n)'}{(n^c)'} = \lim_{n \to \infty} \frac{1/n}{cn^{c-1}} = \lim_{n \to \infty} \frac{1}{cn^c} = 0
\]

\(\ln n \in O(n^c)\) for any \(c > 0\)

Semantics of big-O and \(\Omega\)

- When we say an algorithm takes worst-case time \(t(n) = O(f(n))\), then there exist a real constant \(c\) such that \(c * f(n)\) is an upper bound for any instances of size of sufficiently large \(n\).

- When we say an algorithm takes worst-case time \(t(n) = \Omega(f(n))\), then there exist a real constant \(d\) such that there exists at least one instance of size \(n\) whose execution time \(>= d * f(n)\), for any sufficiently large \(n\).

- Example

 - Is it possible an algorithm takes worst-case time \(O(n)\) and \(\Omega(n \log n)\)?
Practice Problems

- True or false
 - The algorithm takes time in $O(n^2)$
 - The algorithm takes time in $\Omega(n^2)$
 - The algorithm takes time in $O(n^3)$
 - The algorithm takes time in $\Omega(n^3)$
 - The algorithm takes time in $\Theta(n^2)$
 - The algorithm takes time in $\Theta(n^3)$
 - The algorithm takes worst case time in $O(n^3)$
 - The algorithm takes worst case time in $\Omega(n^3)$
 - The algorithm takes best case time in $\Omega(n^3)$

```java
anAlgorithm( int n)
{
  // if (x) is an elementary operation
  if (x) {
    some work done by $n^2$ elementary operations;
  } else {
    some work done by $n^3$ elementary operations;
  }
}
```

Definition of o and ω

- Definition

 $o(g(n)) = \{ f(n) \mid (\forall c \in R^+, \exists n_0 \in N, \forall n \geq n_0)[0 \leq f(n) < cg(n)] \}$

 $\omega(g(n)) = \{ f(n) \mid (\forall c \in R^+, \exists n_0 \in N, \forall n \geq n_0)[f(n) > cg(n) \geq 0] \}$

- Denote upper/lower bounds that are not asymptotically tight

- Example

 $1000 \cdot n \in o(n^2)$; $1000 \cdot n \notin o(n^2)$

 $1000 \cdot n^2 \in \omega(n)$; $1000 \cdot n^2 \notin \omega(n^2)$

- Properties

 $f(n) \in o(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

 $f(n) \in \omega(g(n)) \iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$
Relational Properties

- Transitivity: $O, o, \Omega, \omega, \Theta$
- Reflexivity: O, Ω, Θ
- Symmetry: $f(n) = \Theta(g(n)) \leftrightarrow g(n) \in \Theta(f(n))$
- Transpose symmetry (Duality)

 $f(n) = O(g(n)) \leftrightarrow g(n) \in \Omega(f(n))$
 $f(n) = o(g(n)) \leftrightarrow g(n) \in o(f(n))$

- Analogy

 $f(n) \in O(g(n)) \approx a \leq b$
 $f(n) \in \Omega(g(n)) \approx a \geq b$
 $f(n) \in \Theta(g(n)) \approx a = b$
 $f(n) \in o(g(n)) \approx a < b$
 $f(n) \in o\theta(g(n)) \approx a > b$