Editorial

In this month’s edition of In-the-SPIN Rick Brenner, Chair of the SPIN Nominating Committee, contributes the SPIN Perspectives column. It is an insightful and thought provoking analogy of project needs to the needs of people. In addition, I’ve supplied this month’s Feature Article. In this article you will find more information about CMM Version 2.0, Draft C, which is being incorporated into the SEI’s integrated maturity model or CMMI. When CMMI is released for public review this August, I’ll be working on some informative write-ups on the status and content of CMMI and I’ll include this information in future editions of this newsletter.

This issue of In-the-SPIN, is the last regular monthly issue until we resume publication next September. The Boston SPIN has been providing the newsletter in this format since September and the SPIN Steering Committee is interested in hearing from the SPIN membership and others who have seen this newsletter. Please provide feedback and constructive criticism to carol.pilch@gsc.gte.com.

Consistent with the Boston SPIN charter, In-the-SPIN is provided by the Boston SPIN as a means of supporting the free and open exchange of software process improvement experiences and ideas. The steering committee encourages feedback on the newsletter and broader participation in the content and production of the newsletter. If you have an article you would like to publish in this newsletter, send it to carol.pilch@gsc.gte.com.

SPIN Perspectives

This month’s SPIN Perspectives article is contributed by Richard Brenner. Rick is a Principal with Chaco Canyon Consulting and is the Chair of the SPIN Nominating Committee.

A Hierarchy of Needs for Projects
Copyright (c) 1999 Richard Brenner

Projects are like people. They can be stubborn or cooperative, miserable or fun. Like people, they have needs. Unmet needs affect the project’s behavior.

In Motivation and Personality (1954), Abraham Maslow described human motivation as a search to meet basic needs, which he organized hierarchically. In this hierarchy, the lowest level unmet need determines motivation. Once we secure gratification of a need, the next higher unmet need dominates, and the search for its gratification organizes our behavior.

This idea raises two questions. First, can we construct a Needs Hierarchy for projects? Second, how well does that hierarchy explain project behavior? Answers to these questions could provide guidance to managers of troubled projects. The key concept is to focus management effort on the lowest level unmet need, since it dominates project behavior.

The levels of Maslow’s Hierarchy of Needs range from the

IN THIS ISSUE . . .
Editorial..1
SPIN Perspectives..1
Meeting Summary...2
Boston SPIN Calendar.................................3
Feature Article...4
Boston SPIN...5
lowest level physiological needs to the highest, called self-
actualization.

Physiological Our fundamental needs for food,
water, sleep, touch, shelter, sex and
exercise.

Safety Our needs for security, stability
and freedom from fear and anxiety.

Belonging and love Our needs to give and receive
affection, to relate to other people,
family and friends.

Esteem Our needs for achievement,
adequacy, recognition, status,
appreciation, and mastery.

Self-actualization Our need to actualize our potential
as humans. Because each of us is
unique, this need expresses itself
uniquely for each individual.

A Needs Hierarchy for projects might be:

Resources Needs for equipment, budget,
people, and time.

Stability The need for stable requirements,
stable and secure resources, stable
process, stable team structure, and
freedom from reorganizations.

Business purpose The need to satisfy a significant
business purpose; to be
interdependent with other projects.

Esteem The need to be planned and
executed well; to be novel and
challenging; to have prestige and
status.

Delivery actualization The need to deliver as promised, on
time and on budget; to deliver
unexpected but necessary and
welcome results at no additional
cost.

Verifying this conjecture requires studying a number of cases,
which I haven’t done. My personal experience is consistent
with this model. One project I recall was resource-starved. For
years, we missed milestones in misery while the rest of the
company ignored us. One day, resources arrived. Since we
already had stability, our business purpose became a hot
issue. Political attacks on our project intensified, because our
vision wasn’t integrated with that of the company. This seems
to be well explained by a Needs Hierarchy.

The Panama Canal was a project that satisfied its need for
Delivery Actualization. In delivering a Canal, it invented or
extended dozens of technologies. It determined how yellow
fever spreads; it invented earth-moving technologies; it
pioneered central electrical control systems; it was the largest
concrete structure ever built, and would remain so for more
than 20 years. For a project of seven years duration, it is
remarkable that it opened six months ahead of schedule, and
was 3.5% under budget. Just before completion, a delegation
from the U.S. Commission of Fine Arts, sent to investigate
 improving the Canal’s appearance, recommended that nothing
be changed. Not only had the project delivered a canal, it had
delivered a thing of art, “impressive from its scale and
simplicity and directness.” If any project ever has, the Canal
achieved Delivery Actualization.

How does this model fit projects you’ve worked on? Can you
remember a time when using this model might have helped the
project? Hurt the project? Share your stories, and I’ll publish
the results of this “study.” Contact me at
rbrenner@ChacoCanyon.com

References
McCullough, David. The Path Between the Seas: The Creation
of the Panama Canal, 1870-1914. New York: Simon and

Meeting Summary

Notes from the May Meeting
Contributed by Carol Pilch, GTE

Topic: “Performance Measurement for Software
Organizations”

Speaker: Dave Zubrow, Team Leader for the Software
Engineering Measurement and Analysis group within the SEI

This presentation provided practical guidance and examples
for those who are currently responsible for organizational
performance measurement. The guidance and examples can be
used to get your organization started measuring its
performance. The introductory remarks encouraged the
audience to be focused on “What do I want to know?” as
opposed to “What do I want to measure?” If your
management asks for metrics, you have to ask “why? – what
do you want to know?” It’s important to start with this
premise.

Dave Zubrow provided a description of what is meant by
organizational performance measurement: Quantitative
characterization of an organization’s accomplishment of some
aspect of its goals. Quantitative implies that some
discriminator more than success/failure or yes/no criteria is
needed. The focus is on the organization not on a specific
project or program. Furthermore, what to measure is not
obvious and performance is multidimensional so the
appropriate aspect must be determined. In addition, for
measurement to be meaningful, goals provide a reference point
for comparison and judgement.

Continued on next page
Performance Measurement is Part of Performance Management

The “Performance Management Framework” as defined by the National Academy of Public Administration was presented. This provides the context for defining the organization’s performance metrics. Within the context of the organizations strategic, functional and tactical goals, objectives, and priorities, a set of strategic, functional, and tactical performance measures are selected. These measures are then used to control programs.

Align Measurement with Goals and Objectives

Decisions must be made as to which attributes to measure. The business goals define the need and entities to be measured must align with the goals. In addition, a balanced perspective on performance needs to be considered. Specific perspectives include:

- Sponsor (e.g., program cancellations, percent of system cost allocated to software)
- Customer (e.g., customer satisfaction, system availability, system quality)
- Internal business (e.g., cycle time, rework, earned value, defect containment)
- Innovation and leaning (e.g., maturity level, staff attitude, new technology introduction)

Some examples of organizational improvement goals were provided:

- Internal process improvement
 - Reduce development time by 40% over 5 years
 - Reduce maintenance effort by 40% over 5 years
 - Reduce rework
- Customer Satisfaction
 - Improve predictability to within 10% over 5 years
 - Improve quality by a factor of 5 over 5 years

Standard definitions are needed when metrics are defined. Examples of items that require definition include: life cycle, size, and what is a project.

Criteria for Evaluating Performance Measures

Some key questions to ask with respect to performance measures:

- Are we measuring the right things?
- Are the measures aligned with goals and objectives?
- Are the measures based on strategy and objectives?
- Do the measures reflect:
 - Improvement in performance of mission
 - Improvement in performance of goals and objectives
 - Value added
 - ROI, costs, savings
- Are the measures good?
 - Measure of results
 - Linked to specific and critical processes
 - Understood by their audience and users
 - Credible and effectively communicated
 - Accurate, reliable, valid, verifiable, cost-effective, timely
 - Do the measures provide a foundation for action?
 - Are the measures used in the right way?
 - Strategic planning
 - Guide prioritization of program initiatives
 - Resource allocation decisions
 - Day-to-day management
 - Communicate results to stakeholders
 - Are the measures used to manage the organization?

Dave’s summary statements identified that software development cannot implement performance measurements in a vacuum. Measurement definition requires the mission needs and goals, a customer life cycle perspective. Furthermore, the sponsor and software development managers must agree on the priority organizational areas to which software contributes. Multiple measures are required to gauge real improvement.

The following web addresses were provided for more information:

http://www.sei.cmu.edu
http://www.sei.cmu.edu/sema
http://www.itpolicy.gsa.gov/mkn/pathways/pp03link.htm
http://www.dtic.mil/c3i/c3ia/itprmhome.html
http://www.balancedsocrecard.com

Boston SPIN Calendar

Information about Upcoming Meetings
by Johanna Rothman, Program Chair

June Meeting Announcement

Topic: Why Good Requirements Are Key to Successful Projects
Speaker: Kimberly Roberts
When: Tuesday, June 15, 1999. 6:30pm-8:30pm
 6:30-7:00 Networking
 7:00-7:10 Announcements
 7:10-8:10 Featured Speaker
 8:10-8:30 Questions and Answers
Who: Everyone (Academia, Government, Industry)

Abstract:
Some projects are behind schedule and/or over budget because the project staff doesn't really know what to do - they don't have adequate requirements. This presentation will present some techniques to writing better requirements, a knowledge of writing and structuring both functional and non-functional requirements, and requirements management via information models and traceability.

Continued on next page
The main types of requirements: user needs, functional, performance and interface, are highlighted as well as specialty (non-functional) requirements, that can actually make or break the successful development of your software and systems. This presentation will discuss how to write requirements and will discuss some real life scenarios of how these requirements helped other projects.

About the Speaker:
Kimberly Roberts is a Senior Application Engineer for Quality Systems & Software Inc. (QSS). Kimberly has a decade of experience with specialized knowledge in systems and software engineering environments, process improvement initiatives, and requirements information management.

She received her undergraduate degree from University of Massachusetts, Amherst in 1990 and has achieved Graduate Certification in an Advanced Software and Systems Administration Management Program at Worcester Polytechnic Institute.

Location: GTE, 77 "A" St., Needham MA.

Directions: From Route 128 in Needham, take exit 19A onto Highland Avenue East. Take your first right by the Ground Round and take your second left onto "A" Street. GTE is the last building on the right. Enter the parking lot by the GTE sign and come into the building by the cafeteria entrance, which is located to the left of the main entrance. There will be a security guard at the entrance.

For SPIN info, contact Johanna Rothman, 781-641-4046, or jr@jrothman.com

Looking for Interesting Speakers

All of you are potential speakers!

- Do you have a success story you're willing to share?
- Do you have a lesson learned you can discuss?

You can be a program speaker too. If you're concerned about creating a presentation, or about standing up in front of people, I am willing to work with you to craft an outstanding presentation you will enjoy presenting, and the SPIN members will enjoy hearing.

The Program Committee always wants to get real live experiences from people who are doing process improvement in their organizations. So, let me know what you're doing that others will benefit from. Email: jr@jrothman.com, Phone: 781-641-4046.

Future Program and Speaker Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Speaker/Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 21, 1999 @ GTE</td>
<td>"Are Five levels Enough?"</td>
</tr>
<tr>
<td>Oct. 19, 1999 @ GTE</td>
<td>"Project Estimation"</td>
</tr>
</tbody>
</table>

Feature Article

This month’s Feature Article is contributed by Carol Pilch. Carol is with GTE Government Systems and specializes in Software Process Improvement.

CMM Version 2.0

This article is a follow-up to write-ups in two previous editions of In-the-SPIN that provide information about Draft C of the Software Capability Maturity Model Version 2.0 and specifically, Levels 2 and 3. Draft C, with additional minor updates, was scheduled to be released as Version 2.0 of the CMM in late 1997. However, because of the proliferation of models and the need to address capability maturity more broadly than software, the SEI was redirected by the Office of the Under Secretary of Defense (OUSD) to produce one integrated model. The redirection and subsequent effort became known as CMMI. The CMMI work began in early 1998 and a draft is scheduled to be released for public review and comment this August. Draft C, as I have been describing in these articles, has been incorporated into CMMI.

Maturity Levels 4 and 5

At levels 4 and 5 in CMM Version 2.0, Draft C, there are significant changes from CMM Version 1.1. At the time that Version 1.1 was released, limited information and data was available to characterize the best practices for levels 4 and 5 organizations. Therefore, the key driver in the changes at these levels is that there are now a number of organizations at maturity levels 4 and 5 and a larger amount of data available to characterize levels 4 and 5. Version 2.0, Draft C emphasizes the role of statistics and measurement in achieving organizational change and improvement.

Organization Asset Alignment

This is a new level 4 key process area introduced in Version 2.0, Draft C. Emphasis is on reuse, product lines, product families, domain engineering, and reengineering. Practices are based on empirical observations of what high-maturity organizations do. Meaningful statistical analysis of process data is used as a mechanism for controlling variation.

Organization Process Performance

This key process area addresses the organizational aspects of Continued on next page
the Version 1.1 Quantitative Process Management key process area. The purpose of this level 4 key process area is to establish and maintain the organization’s software process performance baselines and associated process performance models. These baselines and models support the quantitative management of the organization’s and projects’ software processes.

Statistical Process Management
The purpose of this level 4 key process area is to implement and control stable software processes that are capable of building high-quality software work products. Basically, the statistical nature of Quantitative Process Management as defined in Version 1.1 is more rigorous in Version 2.0, Draft C.

Defect Prevention
The purpose of this level 5 key process area is to identify the common causes of defects and other problems, and change the relevant process to prevent that type of defect or problem from occurring in the future. This key process area was a part of Version 1.1 and there are few changes incorporated into Version 2.0, Draft C.

Organization Process Innovation
This level 5 key process area represents a major re-write of Technology Change Management, a level 5 key process area in Version 1.1. The purpose of Organization Process Innovation is to identify process and technology improvements and innovations that would measurably improve the organization’s software processes and thereby help achieve the organization’s software process improvement and related business goals. Deployment is addressed as a separate key process area.

Organization Improvement Deployment
This level 5 key process area focuses on organizational change issues and addresses the deployment of both innovative and incremental changes. The purpose of Organization Improvement Deployment is to continually and measurably improve the organization’s software processes by transitioning improvements into use in a systematic manner.

If you are interested in more information and details, including CMM drafts, on this topic, the SEI maintains a web page on this subject:
http://www.sei.cmu.edu/technology/cmm/

The Boston SPIN is a forum for the free and open exchange of software process improvement experiences and ideas. Meetings are usually held on third Tuesdays, September - June. Boston SPIN welcomes volunteers and sponsors.

For more information about our programs and events contact:
Charlie Ryan
ESC/DIB (Building 1704, Room 202)
5 Eglin Street
Hanscom AFB, MA 01731-2116
Telephone: (781) 377-8324
Email: ryan@sei.cmu.edu

For information about SPINs in general including ***HOW TO START A SPIN*** contact:
Dawna Baird of SEI (412) 268-5539,
dbaird@sei.cmu.edu.

IN THE SPIN is available on our Web page.

TO RECEIVE NOTIFICATION OF NEW ISSUES send email addressed to danallen@danallen.com.

We have 2 separate email lists: one for this newsletter and one containing announcements that we receive from other process organizations and forward out.

TO ADD YOURSELF TO THE ANNOUNCEMENTS LIST send email to ryan@sei.cmu.edu.

Send letter-to-the-editor, quips, quotes, anecdotes, articles, offers to participate in the newsletter committee, and general correspondence to Carol Pilch, carol.pilch@gsc.gte.com.

Send job postings to heimann@world.std.com.

Back issues and other information about Boston SPIN can be found at our WEB HOME PAGE:
http://www.cs.uml.edu/Boston-SPIN/