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Abstract— Honeypots are decoys designed to trap, delay, and
gather information about attackers. We can use honeypot logs
to analyze attackers’ behaviors and design new defenses. A
virtual honeypot can emulate multiple honeypots on one physical
machine and provide great flexibility in representing one or more
networks of machines. But when attackers recognize a honeypot,
it becomes useless. In this paper, we address issues related to
detecting and “camouflaging” virtual honeypots, in particular
Honeyd, which can emulate any size of network on physical
machines. We find that an attacker may remotely fingerprint
Honeyd by measuring the latency of the network links emulated
by Honeyd. We analyze the threat from this fingerprint attack
based on the Neyman-Pearson decision theory and find that
this class of attack can achieve a high detection rate and low
false alarm rate. In order to counter this fingerprint attack, we
make virtual honeypots behave like their surrounding networks
and blend in with their surroundings. We design a camouflaged
Honeyd by revising a small part of the Honeyd toolkit code and
by appropriately patching the operating system. Our experiments
demonstrate the effectiveness of our approach to camouflaging
Honeyd.

I. INTRODUCTION

Honeypots have recently been proposed as a means to
complement the traditional defenses such as firewalls and
Intrusion Detection Systems (IDS) for securing the computer
networks that connect with the Internet. A honeypot is just a
trap in cyberspace and no legal users are supposed to use it.
Any activities taking place on it are inherently suspicious and
likely a probe, attack or compromise. In this way, honeypots
have few false alarms in detecting intrusions, while other IDS
solutions often suffer from high false alarm rates since they
are trying to isolate intrusions from within a high volume of
routine network traffic.

Honeypots take different forms to target different situations.
According to the level of interaction an attacker is allowed
to have with a honeypot, there are low-interaction and high-
interaction honeypots, respectively. Low-interaction honeypots
restrict the interaction between an attacker and the honeypot.
This effectively limits the scope of the attacker’s actions and
minimizes the risk of compromise. On the other hand, high-
interaction honeypots expose the whole system, including the
operating system, to an attacker. On high interaction systems,
attackers can gain full control of the system.

Honeypots can also be categorized with respect to their
implementations. A physical honeypot is a real machine with
its own operating system and IP address, while a virtual
honeypot is a machine which emulates system behavior and
IP addresses. Virtual honeypots have a number of benefits:
a single physical system can emulate more than one virtual

honeypot; they can emulate more than one operating system;
and they can emulate different IP addresses. Virtual honeypots
require far less computational and network resources than
physical honeypots, and they provide far greater flexibility in
emulating various operating systems. In this research, we focus
on studying virtual honeypots.

Honeyd [1] is a low-interaction virtual honeypot. It emulates
computer systems at the network level. Honeyd emulates the
TCP/IP stack and network services of an operating system
in order to convince the attackers that they are exploring a
“real” system. Honeyd can emulate network services such as
HTTP and Telnet. It responds to a network request with re-
sponse packets modified to match the network behavior of the
operating system it has been configured to emulate. Besides
emulating multiple services on multiple machines, Honeyd
also emulates network topology and link characteristics such
as link latency and packet loss.

To perform its function, a virtual honeypot such as Honeyd
has to avoid being discovered. A virtual honeypot that cannot
hide itself is analogous to a trap without any camouflage. In
this paper, we will show that virtual honeypots such as honeyd
may demonstrate distinct temporal signatures that make them
easily detectable. By examining link latency within a network
emulated by Honeyd, an attacker can determine whether the
corresponding links are virtual or real. This stems from the fact
that virtual honeypots are not typically designed to emulate
the temporal behavior of nodes at high fidelity. Honeyd is not
designed to support arbitrary link latency resolution. Ordinary
operating systems, for which Honeyd is designed, typically
do not support the necessary timing resolution either. As a
result, the virtual honeypot displays a significantly different
temporal signature from the physical systems and networks
they are emulating, and the virtual link characteristics differ
statistically from those of surrounding physical links. Using a
campus network as an example, we analyze the threat from
this fingerprint attack using Neyman-Pearson decision theory
and find that this class of fingerprint attack can achieve a high
detection rate with a low false alarm rate.

To counter this class of fingerprint attack against virtual
honeypots such as Honeyd, we design a camouflaged Honeyd,
which supports a link latency on the order of one microsecond
instead of the original one millisecond default. Correspond-
ingly, we generate a new patch to Linux 2.6.10 in order to
support the new Honeyd implementation. Using the Texas
A&M University campus network as an example again, we
demonstrate the effectiveness of our camouflage approach to
hide Honeyd within a metropolitan network (MAN, a network
comprised of multiple LANs). We develop the actual toolkits
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for camouflaging Honeyd and rewrite a small part of the
original Honeyd toolkit code. These toolkits and instructions
can be found in [2].

The rest of this paper is organized as follows. Section II
presents the related work. We discuss the network model and
threat model in Section III. In Section IV, we investigate
how an attacker may discover Honeyd by measuring the link
latency and evaluate its threat against Honeyd. In Section V,
we discuss the necessary approaches to camouflage Honeyd
from the attacker. We conclude this paper in Section VI.

II. RELATED WORK

In this section, we will survey various implementations of
honeypots and then follow that by exploring work related to
attacks and defenses for honeypots. Honeypots are classified
into physical and virtual honeypots according to their imple-
mentation. In addition, they can be classified as low-interaction
or high-interaction.

User-Mode Linux (UML) [3] is designed as a safe, se-
cure way of running Linux versions and Linux processes on
one machine. VMware Workstation [4] is powerful desktop
virtualization software for software developers/testers and IT
professionals who want to streamline software development,
testing and deployment in their enterprise. Both UML and
VMware can be used as virtual high interaction honeypots
since they run full-fledged services on one machine.

Honeyd [1] is categorized as a low-interaction virtual hon-
eypot and is implemented to emulate computer systems at the
network level. In particular, Honeyd emulates the TCP/IP stack
of a target operating system in order to convince attackers that
they are exploring a “real” system. A Honeynet [5] is a high-
interaction physical honeypot, a research effort originated by
the Honeynet Project organization with the goal “to learn the
tools, tactics, and motives of the blackhat community and share
these lessons learned.” A honeynet may contain one or more
honeypots and is highly monitored because of the likelihood
of being compromised.

Dornseif, Holz and Klein [6] presented an approach for
attacking a honeynet locally when attackers break into a
honeynet host. Two articles have been published on local
honeypot identification in two issues of Phrack [7].

Kohno, Broido and claffy developed a method to fingerprint
physical devices based on the skews of the devices’ physical
clocks [8]. That approach can be used to determine whether
different addresses correspond to virtual hosts on the same
physical machine. However, that approach would not work
if the hosts being fingerprinted do not provide timestamps
(e.g., with TCP timestamp option disabled). In this paper,
we provide a complementary approach that does not rely on
timestamp information from the target hosts.

In this paper, we will discuss techniques to measure link
latency. Accurately measuring link latency is still a challenging
research topic. A few network measurement tools (pathchar
[9], clink [10], [11], pchar [12] and pipechar [13]) use a
similar philosophy for the link latency measurement. Those
tools utilize the field of TTL (time to live) in ICMP or UDP
packets. We provide a complete set of approaches to measure
link latency in our context, including the use of TCP packets.

III. MODELS

In this section, we introduce the network model and threat
model used in this paper.

A. Network Model

Honeypots are decoys deployed in a network in order to
trap attackers (and attack) and to learn their tools, tactics
and motives. With this information, we can better understand
and protect against threats. Figure 1(a) illustrates the network
model for a virtual honeypot. The virtual honeypot can emulate
either a single host or a network, whose setting and charac-
teristics are configurable. We denote the emulated network
as a virtual network. The virtual honeypot connects to the
open network, such as the Internet, through a physical network
interface. This physical interface can connect to a security
gateway, which logs, monitors and limits activities on the
virtual honeypot. In this way, the virtual honeypot is open
to hacking, worms, spams and any other attack. This model is
a general framework and can represent both high-interaction
virtual honeypots such as User-Mode Linux (UML) and low-
interaction virtual honeypots such as Honeyd for the objective
of intrusion detection.
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Virtual honeypots are the focus of this paper. Figure 1(b)
illustrates the infrastructure of Honeyd. A virtual network
emulated by Honeyd consists of a variety of components such
as routers and end hosts. The emulated hosts may behave
like a machine installed with Windows, Unix, Linux or other
operating systems. The characteristics of these network units
are delimited by specific scripts. Packets to the virtual network
are processed in the following way: when the packet dispatcher
receives a packet, it traverses the correct entry routing tree
from the root node to the destination node. The packet latency
on all edges of the path is accumulated to determine how
long its delivery should be delayed. The packet delivery uses
the event scheduling mechanism provided by libevent [14].
The libevent APIs are a wrapper of the underlying operating
signal APIs and provide an alternative mechanism to support
callbacks due to signals or regular timeouts.

B. Threat Model

Before we proceed, we need to clarify the capabilities of an
attacker who is interested in determining whether a network
is a virtual one created by honyed or a real physical one. (1)
The attacker is an active one. They can inject probing traffic
into the Internet remotely as normal users do. They can adjust
the frequency and intensity of the probing traffic in order to
prevent it from being discovered. (2) The attacker can utilize
tools to discover the network topology [15]. Then, the attacker
can choose one suspect link to test whether it is real or virtual.
We will discuss how an attacker may use a tool to discover
a metropolitan network topology. (3) The attacker knows the
emulation strategies and algorithms of virtual honeypots. This
assumption is commonly used in security research.

IV. RECOGNIZING HONEYD

In this section, we first give an overview on how an attacker
may fingerprint a virtual network emulated by Honeyd. We
then define the problem formally and introduce issues related
to the fingerprint attack. Because of the page limit, we will
only show our major results as follows for recognizing and
camouflaging honeyd. Please refer to the extended technical
report [2] for details.

A. Overview and Problem Definition

Since large portions of the operational nodes (for example,
users, server programs and network devices) are missing from
virtual honeypots, emulating their operations requires trigger-
ing by timer events or signals. Packets to the virtual network
are dispatched by timers. The accuracy of event scheduling is
determined by the timing accuracy of the underlying operating
system. In modern operating systems, timer interrupts are
generated by the system’s timing hardware at regular intervals.
At boot time, the operating system kernel sets this interval
according to the kernel parameter HZ, which is architecture-
dependent. Without loss of generality, in this paper, we focus
on studying Honeyd deployed on Linux on x86 PC. The results
in this paper and our analysis approach are readily applied to
other platforms.

HZ of the x86 PC defaults to 1000 in Linux kernel 2.6 and
100 in the previous versions of Linux kernel up to 2.4 [16].

These interrupt rates mean that the link latency emulated by
systems like Honeyd can only achieve an accuracy of 10ms
and 1ms for Linux 2.4 and 2.6 kernels respectively. Therefore,
the link latency within a virtual network will always be around
a multiple of 10ms or 1ms. There are two security concerns
raised by this observation: (1) a link latency with multiples
of 10ms or 1ms can be a fingerprint of Honeyd; (2) with
today’s network hardware and bandwidth capacity, the link
latency within a wired network can barely reach 1ms, let alone
10ms. This discrete latency gives rise to a timing signature of
a virtual network emulated by Honeyd. Thus, if an attacker
can recognize that a link exhibits such a signature, they can
conclude that this is an emulated link and the corresponding
network is virtual rather than physical.

Therefore, the problem of recognizing Honeyd can be
defined as follows: Given a link connecting two routers within
a network, how can an attacker determine by measuring the
link latency whether the link is a real physical link or one
emulated by Honeyd?

B. Issues Related to Recognizing Virtual Honeypots

 

Honeyd Virtual network Adversary 

R1 R3 R2 

pkt1

pkt2 

2 × (Link Latency between R2 and R3) = RTTpkt2 – RTTpkt1 
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From the discussion above, we know the success of recog-
nizing Honeyd lies in accurately measuring link latency of a
remote network. Figure 2 demonstrates the principle method
of deriving link latency1. In Figure 2, RTT refers to Round Trip
Time. To find the link latency of a network link connecting
routers R2 and R3, an attacker can send a pair of packets
< pkt1, pkt2 > of minimal size. pkt1 is addressed to router
R2 while pkt2 is addressed to router R3. Intuitively,

two-way link latency = 2 × LLR2,R3 (1)

= RTTpkt2 − RTTpkt1 (2)

where RTTpktn is the RTT of packet n and LLR2,R3 is the
one-way link latency between R2 and R3. In the following
discussion, when we mention link latency, we refer to the two-
way link latency for brevity.

Network noise may influence the accuracy of link latency
measurement [10]. When a packet traverses the Internet, the
intermediate routers and transmission media may disturb the
timing of the packet. This forms the network noise, which
disturbs the measurement of RTT. In our experiments, we use
the same statistical analysis as the one used by clink [10],

1We use a virtual network topology similar to the one defined in con-
fig.sample, shipped with Honeyd 1.0 [17].
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[11] for deriving link latency2. Interested readers may refer to
[10] for the details. Accurately measuring link latency is still
a challenging research topic.

Therefore, from the discussion above, we can see that from
the viewpoints of both attackers and defenders, there are four
critical issues:

1) What kind of packets can the attacker utilize to derive
the round trip times and the link latency?

2) How can an attacker recognize a virtual network using
the measured link latency?

3) How effective is this form of fingerprint attack?
4) How can we hide Honeyd from this form of fingerprint

attack?

We will answer these questions in the following sections.

C. Measurement of Round Trip Times

In this section, we answer the first question in Section IV-
B: “What kind of packets can the attacker utilize to derive the
round trip times and the link latency?” The key to successfully
recognizing a virtual network is to accurately derive the link
latency. For the approach illustrated in Figure 2, an attacker
has to measure the RTT of a packet sent from the attacker’s
probing machine to the victim router. This requires that the
router generates a reply packet to a probing packet. The RTT
can then be calculated as the difference between the sending
time of the probing packet and the receiving time of the reply
packet. There are several ways for an attacker to force a reply
packet from nodes (routers or end hosts), depending on what
services are provided on the node.

1) Ping Based Approach: This might be the most straight-
forward approach. The Ping program sends an ICMP echo
request message to a host and expects an ICMP echo reply to
be returned in order to check if a network unit is alive [18].

2) TCP Based Approach: There are two main classes of
TCP based approaches to derive the RTT. First, if the victim
host supports some well-known TCP services, the attacker can
exploit these services to get the RTT. For example, if the
victim supports Telnet, an attacker can exploit the procedure
of establishing TCP connections (the three way hand shake).
When an attacker sends a SYN packet to the victim router,
the TCP service on a router or host will return an ACK/SYN
packet in response to the attacker’s SYN packet.

Even without any well-known TCP service on the victim
router, the attacker may still be able to exploit the TCP
protocol to derive the RTT. A reset (RST) is sent by TCP
whenever an arriving TCP segment doesn’t appear correct
for the corresponding connection. Thus, the attacker can send
a TCP packet with a bogus TCP source or destination port
number to the victim router. Then the router will return a
TCP RST packet to the attacker. Thus, the attacker obtains
a reply packet and can calculate the RTT. We use this
approach in our experiments. To correlate sent and received
TCP packets, the attacker can utilize the TCP sequence number
and acknowledgement number.

2clink utilizes UDP traffic as the probing traffic. We can also apply its
measurement principle to ICMP and TCP traffic.

3) UDP Based Approach: Similarly, RTT information can
be gathered with UDP as well. If the victim network unit
supports some well-known UDP services, the attacker can
exploit these services to get the RTT. If no such services
are supported on the router, the attacker may still be able to
exploit the UDP protocol to get RTT information. Similarly to
the case of TCP, the victim router may respond to erroneous
UDP packets. For example, when UDP receives a datagram
and the destination port does not correspond to a port that
some process is using, UDP responds with an ICMP “port
unreachable” packet [18]. The attacker is also able to correlate
a sent UDP packet to a received ICMP packet by using the
source or destination port because the ICMP packet contains
the UDP header. We use this approach in our experiments.

Finally, it must be pointed out that any of the methods
mentioned above (and others) can be easily foiled by not
having the virtual honeypot respond to the request or to the
erroneous packet. This, however, would render the honeypot
“silent”, in which case it can only be used as a port knocking
detector. In order for honeypots (physical or virtual) to be
useful for gathering information about attacks, they must at
least engage the attacker in some packet exchange, at which
point some RTT information can be gathered.

D. Recognizing Virtual Honeypots

Once the RTT information has been gathered, and the link
latency determined, a decision must be made on whether the
link is part of a virtual honeypot. This section answers the
second question in Section IV-B: “How can an attacker build
a profile and recognize Honeyd based on the profile?”

1) Framework of Detecting Virtual Honeypots: The above
problem is naturally a decision problem. Generally speaking,
the goal of the pattern recognition process is to use classifiers
to classify an unknown pattern as belonging to one of several
existing patterns, classes, with the help of some distinguishing
feature. In this paper, we use link latency as the feature and
leave other features to exploit in our future work..

In the problem of detecting virtual honeypots, there are only
two classes of events:

ω0 : A suspect link is a real link
ω1 : A suspect link is a virtual link

(3)

Therefore, following the common practice, a pattern recog-
nition system for detecting virtual honeypots consists of two
phases: (a) off-line training and (b) on-line recognition.

Below is the procedure for the off-line training phase.
Collect training data from real networks and virtual net-

works: An attacker applies the probing traffic to known real
networks and virtual networks. They collect the RTT data
samples for both real links and virtual links.

Preprocess training data: The attacker derives two classes
of link latency data sample from the RTT data by using
approaches described in Section IV-C: real link latency sample
and virtual link latency sample. From these two classes of link
latency sample, the attacker is able to derive two distributions:
real link latency distribution, denoted as f0(x), and virtual link
latency distribution, denoted as f1(x). In this paper, we assume
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that the attacker uses kernel based density estimation approach
[19], [20].

Select decision rule: The attacker selects an appropriate
classification rule based on the training data and the two
trained link latency distributions. In this paper, we assume
that the attacker uses a classifier based on the Neyman Pearson
theory, which will be introduced in the following section.

The procedure for the on-line recognition phase is similar to
the off-line training phase. An attacker collects a link latency
sample from a suspect network. Then the attacker uses the
trained classifier to decide whether the link is real (class ω0)
or virtual (class ω1).

2) Classifier Based on Neyman-Pearson Decision Theory:
In this paper, we assume that an attacker uses a classifier
based on the Neyman-Pearson (NP) decision theory [21] for
recognizing virtual honeypots. The advantage of this theory
is that Neyman-Pearson classification does not assume knowl-
edge of or about a priori class probabilities such as those used
in Bayesian classification theory.

We define detection rate PD as the probability that a link
emulated by Honeyd is detected as a virtual link. False-alarm
rate, PF , is the probability that a real link is misclassified as a
virtual link. We have the following Neyman-Pearson criterion:

Given a maximum false alarm rate α,

maximize detection rate PD such that PF ≤ α (4)

Neyman-Pearson criterion tells us that we should construct
our decision rule to have the maximum detection rate while
not allowing the false alarm rate to exceed a certain value
α. In other words, the optimal detector according to the
Neyman-Pearson criterion is the solution to this constrained
optimization problem in (4).

This optimization problem has an explicit solution. It is
given by the Neyman-Pearson lemma. We limit our discussion
to continuous random variables. Recall f0(x) as the link
latency PDF of a real link and f1(x) as the link latency PDF
of a link emulated by Honeyd.

Neyman-Pearson Lemma: Define

∧(x) =
f1(x)
f0(x)

(5)

For a given maximum false alarm rate α, we can calculate a
decision boundary γ ′ by (6):

PF =
∫
∧(x)>γ′

f0(x)dx = α (6)

Then we have the following classifier

∧(x) =
f1(x)
f0(x)

{
< γ′, the suspect link is real
> γ′, the suspect link is virtual

(7)

Detection rate can then be calculated as follows:

PD =
∫
∧(x)>γ′

f1(x)dx (8)

Please note that here we assume that the mean of f1(x)
is greater than the mean of f0(x). This assumption will be
validated from our experimental results.
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Fig. 3. Calculation of PD and PF

When we use a classifier based on the Neyman-Pearson
theory, because we know f0(x) and f1(x), the classifier in
(7) is often translated, either theoretically or numerically, to a
simpler classifier as shown in (9):

x

{
< γ, the suspect link is real
> γ, the suspect link is virtual

(9)

We will use (9) as the classifier in this paper. Figure 3
illustrates how to calculate detection rate PD and false alarm
rate PF in this paper, where γ is the derived decision boundary.

We implemented the above detection rate and false alarm
rate calculation in Matlab.

E. Evaluation

In this subsection, we evaluate the threat from an attacker
who applies Neyman-Pearson decision theory to distinguish a
Honeyd emulated virtual link from a real link.

1) Evaluation Metrics: In this paper, we use detection rate
PD and false alarm rate PF as our evaluation metrics for
detecting honeyd. From Figure 3, we can see that detection rate
PD and false alarm rate PF have an interesting relationship.
Both PD and PF decrease to zero as γ increases, while both
PD and PF increase to one as γ decreases. To display the
relationship between PD and PF , we use a Receiver Operating
Characteristic (ROC) curve, which is a plot of PD versus PF .
In reality, when an attacker tries to find a virtual honeypot by
using the Neyman-Pearson theory, they want a high detection
rate and a low false alarm rate. If we want to hide virtual
honeypots, the ideal scenario is an attacker will get a false
alarm rate as high as the detection rate.

2) Experiment Setup: Figure 4 illustrates our experimental
setup. We deploy a virtual Honeyd network in our laboratory 3.
The objective of the attacker is to decide whether the link
between R2 and R3 is a Honeyd emulated link (the same
configuration as the one in Figure 2. We have similar results
for other virtual network topologies). Between the Honeyd
virtual network and the attacker’s machines, we set up a
machine with NISTnet [22] to emulate the influence from cross
traffic or intermediate networks on the detection of Honeyd.

3) Deriving Link Latency Distributions: In order to detect
a Honeyd emulated link, the attacker will use the pattern
recognition based approach described above. During offline
training, attackers will derive the latency PDFs for both real

3Because of the university administration issues, we cannot deploy Honeyd
at a campus scale.
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and virtual links. To derive the link latency distributions for
the real surrounding network links, an attacker can first derive
the network topology of the target network and then use one
of the approaches in Section IV to derive the link latency of
all the links. Then, from the measured link latency samples,
the attacker can derive the link latency distribution for the
network. Recall the attacker uses the Gaussian Kernel based
density estimation approach to derive the empirical density
function in this paper, .

In our experiments, we use a network topology discovery
tool called Argus [23]. This tool uses an ICMP/ traceroute-
based topology discovery methodology. It is flexible and can
be used for most networks. We applied Argus against Texas
A&M University’s campus network and found nearly 20,000
running network units. Figure 5 shows the real link latency
distribution. Negative values in the distribution are caused
by the kernel based density estimation approach and can be
ignored.

To derive link latency distributions of Honeyd emulated
links, the attacker can use the setup in Figure 4 and derive
link latency distributions for Linux 2.4 and 2.6 kernels. Figure
6 demonstrates the probability density function (PDF) of link
latency when an attacker uses the TCP probing approach.

4) Failure of Current Honeyd Implementation: We have a
few observations from Figure 5 and Figure 6: (1) We can
see that the link latency emulated by Honeyd is roughly a
multiple of 10ms on Linux 2.4.18 and 1ms on Linux 2.6.9, as
we analyzed in Section IV-A. Clearly, the mean of each virtual
link latency density function is larger than the mean of the real
link latency distribution. This validates the assumption made
in Section IV-D.2. It is a quirk of OS and honeyd scheduling
policies that Linux 2.6.9 yields a factor of one times the default
interrupt rate while Linux 2.4.18 yields a factor of two times
the default interrupt rate. (2) Moreover, the PDF curve for
virtual link latencies is confined to a very narrow range. This
means that a packet pair based probing approach in this case
generates very accurate measurement of link latency. (3) The
real campus network link latency distribution in Figure 5 and
Honeyd-emulated network link latency in Figure 6 are widely
different along the axis of link latency.

The above observations can well explain the ROC curves
in Figure 7 in the case of detecting a virtual link on Linux

2.6.9. From Figure 7, we have the following observations: An
attacker is able to achieve a high detection rate while keeping
the false alarm rate low for any of the TCP, UDP or Ping based
approaches. For example, when the false alarm rate is around
2%, an attacker may achieve a detection rate of over 98% in
all three cases. The reason is the Honeyd-emulated network
link latency is much larger than the real network link latency.
Moreover, the emulated link latency is narrowly confined to a
region around 1ms or 20ms.

TCP, UDP and Ping probes produce similar ROC curves.
We expect this since our experiments are run within a campus
network. If an attacker deploys the attack from a remote
site, TCP and UDP probes will be able to achieve better
performance because the Ping packets’ low scheduling priority
on the Internet. In the remaining part of this paper, we will
not differentiate results from TCP, UDP and ICMP probes.

V. CAMOUFLAGING HONEYD

The key reason for the failure of the current Honeyd imple-
mentation (and likely other virtual honeypot implementations
as well) is the low fidelity of emulation (in the time domain)
of the system components by the virtual honeypot. These
components may represent users, applications and servers in
the case of physical honeypots, in addition to various hardware
resources in the case of virtual honeypots. The processing
delay caused by these components is emulated by timers in
the virtual honeypot. When these timers are either carelessly
defined in the virtual honeypot implementation or are provided
at insufficient accuracy by the underlying OS, a timing signa-
ture emerges. In this case, an attacker may construct a profile
of a virtual honeypot and launch a timing attack. In the case
of Honeyd, for example, emulated virtual links are statistically
very different from the surrounding physical network links.

A. Overview of the Principle

To camouflage Honeyd and defeat the type of timing attacks
described above, we have to modify Honeyd and the under-
lying OS support to allow for a higher-fidelity emulation of
events. This requires (a) configurable definition of accurate
timing behavior, and (b) support for accurate triggering of
events by the underlying OS. In our case, this means (a)
accurately configurable link latencies, and (b) high-resolution
timers within the OS. In this way, we can assign a reasonable
link latency for Honeyd based on its surrounding network link
characteristics, and an attacker will not be able to build a useful
profile for Honeyd.

We camouflage Honeyd in the following ways: (1) We
change the Honeyd code to make it support a timing resolution
of microseconds µs. This involves modifying both Honeyd
and the event management library (libevent). (2) There are a
number of ways to improve the OS support for high-fidelity
timers. We can use the real-time event scheduling in commer-
cial real-time operating systems [24] or one of various open
source projects for high resolution timers [25]. The advantage
of this approach is that we may achieve high-resolution timers
at low overhead since these approaches typically make use
of hardware support for accurate timers. The disadvantage is
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Fig. 6. PDFs of Virtual Link Latency (Note the finer x-axis scale compared with Figure 5)
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Fig. 7. ROC for Fingerprint Attack

that we would need to rewrite the event management library
(libevent). In this paper, we improve the operating system’s
timing accuracy by increasing the kernel parameter HZ (Refer
to Section IV-A). We ported the HZ patch [26] to kernel 2.6.10.
In this way, we don’t need to change the libevent library at
all, however we may sacrifice some CPU efficiency. Since the
physical machine running Honeyd should not be running any
other applications, this is not crucial.

Thus, if the PDF of the Honeyd emulated link latency
can approach the real network link latency PDF in Figure
5, an attacker cannot determine whether a link is emulated
by Honeyd or not. In the following, we demonstrate the
effectiveness of camouflaging virtual honeypots.

B. Effectiveness of Camouflaging

Recall that in order to camouflage Honeyd from the fin-
gerprint attack as discussed in this paper, we need to make
Honeyd capable of emulating real network link latency. For
example, in the context of the Texas A&M University cam-
pus network, if Honeyd emulated link latency could have a
distribution like the one in Figure 5, the attacker will not
be able to use the fingerprint attack to tell the difference
between emulated links and real links. Therefore, in order to
camouflage Honeyd, we determine a link latency distribution
for the virtual network that is as close as we can emulate to
the real network’s link latency distribution. Then we randomly
generate values from our approximate distribution to use when

we configure Honeyd emulated link latencies.

From the above discussion, we know that if the PDF of the
Honeyd emulated link latency can approach the real network
link latency PDF in Figure 5, an attacker cannot determine
whether a link is emulated by Honeyd or not. Figure 8 shows
the emulated network link distribution we generate to match
the real campus network latency distribution. We can see
the similarity of the two distributions in Figure 8. In our
experiments, we set HZ as 20, 000 and adjust link latency
in the Honeyd configuration. With few adjustments, we can
achieve the effect shown in Figure 8. Actually, since we can
adjust parameters HZ in the Linux kernel and link latency
in the Honeyd configuration, we may produce a broad range
of distribution patterns resembling real network link latency
distributions.

Figure 9 shows the curve of detection rate and false alarm
rate versus decision boundary. From Figure 9, we can derive
Figure 10, which shows the ROC curve for the camouflaged
Honeyd. The ROC curve almost follows a 45 degree diagonal,
which represents the worst-case for detection, but the best case
for camouflaging. That is, when the detection rate is big, the
false alarm rate is big. When the detection rate is small, the
false alarm rate is small too. For example, our experiments
show that when the detection rate is 97%, the false alarm rate
is as high as 90%. When the detection rate is 15%, the false
alarm rate is around 27%. This shows that when we apply the
above camouflaging approach to Honeyd, an attacker can no
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Fig. 10. ROC for Camouflaged Honeyd

longer use the fingerprint attack discussed in this paper. This is
an intuitive result considering the two overlapping distributions
in Figure 8.

VI. CONCLUSIONS

In this paper, we address issues related to detecting and
“camouflaging” virtual honeypots. In general, virtual honey-
pots emulate characteristics of the target operating systems
or networks. It is well known that such emulation is often
a challenging task. An inappropriate emulation may expose
the existence of the virtual honeypot. An attacker may find
that the characteristics of a victim network cannot match
believable parameters or those of its surrounding networks.
We emphasize that great care has to be taken to hide virtual
honeypots within their surroundings.

In particular, we find that Honeyd can neither configure nor
emulate network link latencies at a resolution finer than 1ms.
Our measured results demonstrated an emulation accuracy
of 1ms or 10ms on a Linux platform, which is too large
to accurately emulate a metropolitan network where Honeyd
might be deployed. An attacker can build a profile of Honeyd
link latency and remotely fingerprint Honeyd by measuring
the link latency. Our experiments show that the attacker may
derive a high detection rate for Honeyd with a low false alarm
rate. To camouflage virtual honeypots, the key is to make them
behave like the surrounding network. In our specific case, if
the PDF of the Honeyd emulated link latency can approach the
real network link latency PDF, an attacker cannot determine
whether a link is emulated by Honeyd or not. To achieve a
high fidelity emulation of link latency, we improve the OS
timing accuracy by changing the Linux kernel parameter HZ.

For future work, we believe that other vulnerabilities exist in
emulation based virtual honeypots and plan to do a thorough
investigation of them and design compensating camouflaging
approaches.
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