1. (10 points) Formally define a DFA that accepts the following language over the alphabet \{a,b\}: \(L = \{a^m b^n : m,n > 0 \} \).

2. Let \(L = \{w : w \) has even length, starts with 1, and ends with 01\} be a language over alphabet \{0,1\}.
 (a) (10 points) Show that \(L \) is regular by giving a regular expression generating the language.
 (b) (10 points) Convert the regular expression obtained in (a) to an NFA using the procedure described in class.

3. Let \(A = (Q, \Sigma, \delta, q_0, F) \) be an NFA, where
 • \(Q = \{q_0, q_1, q_2, q_3\} \)
 • \(\Sigma = \{a, b\} \)
 • \(F = \{q_3\} \)
 • \(\delta \) is defined below:
 \[
 \begin{array}{c|cc}
 \delta & a & b & \varepsilon \\
 \hline
 q_0 & \{q_0, q_1\} & \{q_0, q_2\} & \\
 q_1 & \{q_3\} & & \\
 q_2 & & \{q_3\} & \\
 q_3 & & \{q_1, q_2\} & \\
 \end{array}
 \]
 (a) (15 points) Find the regular expression for the language accepted by \(A \).
 (b) (15 points) Convert \(A \) to an equivalent DFA \(A' \).

4. (20 points) Let \(L \) be a regular language over alphabet \(\Sigma \). Let \(L' \) be a language defined over \(\Sigma \) such that \(L' = \{xy : x \) is in \(L \) and \(y \) is not in \(L \} \). Is \(L \) regular? Prove the correctness of your answer.

5. (20 points) Let \(L = \{0^n1^{2n} : n > 0 \} \). Prove that \(L \) is not regular.