Bacon: A GPU Programming Language With Just in Time Specialization (Draft)

Nat Tuck
University of Massachusetts Lowell, Lowell MA 01854, USA

Abstract. This paper describes Bacon, a data-parallel programming system targeting OpenCL-compatible graphics processors. This system is built upon the existing OpenCL standard in order to make it easier for programmers to write high performance kernels for GPU accelerated applications. The OpenCL C syntax is extended into a new language, Bacon C, intended to make development significantly more convenient and enabling pre-optimizations based on just-in-time specialization as this code is compiled via OpenCL at runtime. Benchmarks are provided for matrix multiplication comparing a Bacon implementation to versions using OpenCL directly. Speedups are demonstrated both for naive implementations and when comparing a Bacon implementation of generalized block decomposed matrix multiplication to a hand-vectorized OpenCL kernel. This latter result demonstrates the benefit of the total loop unrolling enabled by just-in-time specialization. Additionally, a Bacon implementation of a more complex computation, stereo disparity, is considered.

1 Introduction

The use of Graphics Processing Units (GPUs) for general purpose parallel computing has become increasingly feasible over the last few years. In response to the platform specific programming solutions from Nvidia and Microsoft, Apple developed the OpenCL standard as an open and cross platform programming interface to this hardware. This standard has since been implemented by a number of major vendors including AMD, Nvidia, Intel, and IBM.

The OpenCL standard[1] consists of two major pieces. First, it defines a programming language called OpenCL C for writing compute kernels to run on parallel hardware. Second, it defines runtime APIs for C and C++ that allow these kernels to be compiled, loaded, and executed from programs running on a host machine.

OpenCL C uses the syntax of C99 and provides a set of built in data types and functions that expose the numeric computation capabilities common to modern GPU devices. The specification explicitly disallows the use of various C99 functionality that is not supported by GPU hardware, including function pointers, recursion, and any sort of dynamic memory allocation or array sizing.

Rather than providing a stand-alone program to compile OpenCL C kernels, the OpenCL C and C++ APIs give developers the pieces necessary to build a
compiler into their host program. This allows OpenCL programs to be portable across different hardware by architectures delaying compilation until runtime when the target GPU device is known, but requires each developer to write quite a bit of code to load the source code and perform various other bookkeeping activities.

Bacon was developed to improve upon the OpenCL programming experience and make it easier to write high performance programs for GPU hardware. It does this by extending the OpenCL C syntax into a new language called Bacon C, and by performing pre-optimizations as the Bacon C code is compiled to OpenCL C.

The key optimization performed by the Bacon compiler is just in time specialization. When a Bacon kernel is written, some integer arguments can be marked as specialization-time constants. When a kernel is first called with a given set of values for those arguments a specialized version of that kernel is generated with those variable arguments replaced with constant values. This allows for a variety of optimizations be performed by the OpenCL compiler. Further, it allows for any variable sized array declarations that depend only on these specialization-time constants to be turned into constant sized arrays that are allowed by OpenCL.

These improvements are evaluated using matrix multiplication as a test case. Both simpler code and improved performance are demonstrated.

2 Previous Work

2.1 Partial Evaluation

Specialization, also known as partial evaluation, has been shown to be a very effective optimization by projects such as Tempo[5], which does general partial evaluation of C code at compile time. Just in time specialization was popularized by its use in typing dynamic languages, as shown in the Self language[4]. Just in time specialization on values has been used in Prolog systems by Bolz[2].

2.2 OpenCL Libraries and Front-Ends

Bacon is not the first attempt to provide an improved programmer experience for OpenCL. Rick Webber has developed an improved C++ API called clUtil[10]. Bindings for other languages, like the JOCL[8] binding for Java, provide APIs at a variety of levels of abstraction.

Another very interesting approach allows the programmer to describe the computation to be executed on the GPU in the same language as the rest of the program. An OpenCL kernel is then generated automatically. This has the potential benefit of increased expressive power and programmer familiarity at the cost of increased complexity and necessarily leaky abstraction when the host language contains features that can’t be cleanly transformed into GPU code. Examples of this approach include CLyther[9] for Python and ScalaCL[3] for the functional language Scala.
kernel
Array2D<float>
mat_mul(Array2D<float> aa, Array2D<float> bb)
{
 SETUP:
 global Array2D<float> cc[aa.rows, bb.cols];

 BODY:
 @range [cc.rows, cc.cols];
 float sum = 0.0;
 assert(aa.cols == bb.rows,
 "Matrices must have compatible dimensions.");
 for (int kk = 0; kk < aa.cols; ++kk) {
 sum += aa[$row, kk] * bb[kk, $col];
 }
 cc[$row, $col] = sum;
 return cc;
}

Listing 1: Naive Matrix Multiplication in Bacon C

3 Bacon

3.1 Language

Bacon C is based on OpenCL C with extensions for improved usability and to enable the automatic generation of C++ wrapper code. A sample Bacon C kernel that performs matrix multiplication is shown in Listing 1.

Wrapper code generation is enabled by the separation of each kernel declarations into separate SETUP and BODY sections. Conceptually, the SETUP section is for code is independent of any specific parallel thread while the BODY section is the code that runs in parallel. This allows the declaration and dynamic sizing of variables that will reside in GPU global memory and can be returned to the host process.

Each BODY includes a @range declaration that specifies the range it will be executed over in parallel. Within the BODY, the current position in that range is held in special variables named $row, $col, and $dep for the first, second, and third dimension respectively.

Parametrized types for 1D, 2D, and 3D arrays are provided natively. The types are parametrized using C++-style angle bracket syntax. Both declarations and element access use a comma separated list of dimensions in square brackets. The dimensions of these arrays can be accessed using struct-style dot notation.

Additional error handling is provided through the assert and fail keywords which will raise exceptions in the host process if triggered. Fail throws an error if it is executed at all, while assert is triggered if its condition is false.
Each Bacon kernel has a set of specialization variables. The dimensions of any arrays passed as arguments to a kernel are always specialization variables. Other specialization variables can be specified explicitly by declaring arguments using the `const` qualifier. Whenever a kernel is called with a new set of specialization variables a specialized version of that kernel is generated and executed.

This specialization, in addition to providing performance benefits, allows for the simulation of variable sized arrays in thread-local memory as long as the array size depends only on `const` variables and array dimensions. This works around one of the main constraints imposed by OpenCL. The blocked matrix multiply kernel in Listing 2 gives an example of this feature.

3.2 Implementation

The Bacon system consists of two pieces: the compiler and the runtime library. The compiler parses the Bacon C source and outputs a C++ wrapper and the serialized abstract syntax tree (AST). The runtime library is called from the generated wrapper to load the intermediate form code, generate specialized OpenCL C code when a kernel is called, and run that code on the GPU using the OpenCL runtime.

The system is built using Perl and C++. The front-end compiler parses the source code using Parse::Yapp[6], a yacc-compatible parser generator for Perl. This constructs the abstract syntax tree, which is then walked to generate the C++ wrapper.

The generated C++ wrapper provides a C++ function with the kernel’s type signature that can be called from the user’s application. When this function is called, the runtime library loads the AST and walks it to generate the specialized OpenCL code. Optimizations are performed at code generation time without any intermediate pass that transforms the representation.

The two optimizations that are performed by the Bacon library are constant propagation and loop unrolling. Constant propagation calculates the values of all the variables that have been marked as `const` by the programmer. If the value of any of these variables cannot be computed from the specialized arguments to the kernel, the Bacon runtime will throw an exception. This information is used to construct a symbol table, and references to these variables are replaced with their constant integer values in the generated OpenCL code. Loop unrolling is then performed on any loops that can be statically analyzed.

Loop unrolling is included because neither the AMD nor Nvidia OpenCL compilers do it by default and manually unrolling loops is time consuming and error prone. Loop unrolling in Bacon is an even more powerful optimization than usual due to the ability to either fully unroll loops or to unroll them by a factor that is guaranteed to evenly divide the iteration count because array sizes are always known due to just in time specialization.

The implementation of Bacon is available publicly under an open source license. The current version can be downloaded from the public git repository

\[1\] http://code.ferrus.net/compilers/bacon.git
kernel
Array2D<float>
blocked_mat_mul_private(Array2D<float> aa, Array2D<float> bb,
 const uint blksz)
{
 SETUP:
 global Array2D<float> cc[aa.rows, bb.cols];

 BODY:
 @range [cc.rows / blksz, cc.cols / blksz];

 private Array2D<float> sum[blksz, blksz];
 int ii, jj, kk, gg;

 for (ii = 0; ii < blksz; ++ii) {
 for (jj = 0; jj < blksz; ++jj) {
 sum[ii, jj] = 0.0;
 }
 }

 int base_ii = $row * blksz;
 int base_jj = $col * blksz;
 int base_kk;

 for (gg = 0; gg < aa.cols / blksz; ++gg) {
 base_kk = gg * blksz;

 for (ii = 0; ii < aa.cols / blksz; ++ii) {
 for (jj = 0; jj < blksz; ++jj) {
 for (kk = 0; kk < blksz; ++kk) {
 sum[ii, jj] += aa[base_ii + ii, base_kk + kk] *
 bb[base_kk + kk, base_jj + jj];
 }
 }
 }
 }

 for (ii = 0; ii < blksz; ++ii) {
 for (jj = 0; jj < blksz; ++jj) {
 cc[base_ii + ii, base_jj + jj] = sum[ii, jj];
 }
 }

 return cc;
}

Listing 2: Blocked Matrix Multiplication in Bacon C
Table 1. Summary of 4k Matrix Multiplication Performance

<table>
<thead>
<tr>
<th>Test</th>
<th>Time (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenCL - Naive</td>
<td>11.9</td>
<td>1.0</td>
</tr>
<tr>
<td>OpenCL - Hand Vectorized</td>
<td>2.54</td>
<td>4.7</td>
</tr>
<tr>
<td>Bacon - Naive (Best)</td>
<td>3.45</td>
<td>3.5</td>
</tr>
<tr>
<td>Bacon - Blocked (Best)</td>
<td>1.97</td>
<td>6.1</td>
</tr>
</tbody>
</table>

4 Performance Results

4.1 Matrix Multiplication

In order to evaluate the performance of the Bacon system, we compare the run time of matrix multiplication kernels written in both Bacon C and OpenCL C. These results are summarized in Table 1, which shows that Bacon is able to provide measurable performance improvements over similar programs written directly in OpenCL C.

Testing was performed on an ATI Radeon HD 5830 GPU. This is a cut down version of AMD’s current top of the line GPU, the Radeon HD 6970. The 5830 sells for around $140 at the time of this writing compared to $340 for the 6970, while providing over 60% of the theoretical compute power. A similar Nvidia card was purchased for comparison testing, but the comparison was not performed due to implementation incompatibilities that we have not yet resolved.

Four implementations of matrix multiplication were tested:

- **Bacon - Naive** Shown in Listing 1.
- **OpenCL - Naive** An equivalent OpenCL C implementation.
- **Bacon - Blocked** Shown in Listing 2.
- **OpenCL - Hand Vectorized** Hand unrolled using vector types to compute 4x4 blocks. Based on a sample from the AMD OpenCL SDK.

The execution time of these four kernels was tested on randomly generated 4096x4096 matrices. Each test was performed five times and the average result was taken. The times were very consistent; most tests had a coefficient of variation under one percent. The speedups over the naive OpenCL implementation are shown in Figure 1.

These measurements clearly show that value specialization provides significant speedups over a non-specialized OpenCL kernel. This result can be explained by the fact that providing constant values at compile time allows the OpenCL C compiler to do extensive constant propagation-based optimizations.

The results from loop unrolling are more complicated. Unrolling loops too much drastically decrease performance, most likely due to the exhaustion of registers on the GPU device. Still, when properly tuned, loop unrolling provides significant speedups allowing the blocked Bacon kernel to beat the hand vectorized OpenCL kernel by nearly 30 percent.
In order to demonstrate that Bacon is suitable for complex applications we consider an implementation of stereo disparity matching. This is an application that is well suited to GPU implementation due to being computationally expensive and naturally parallel. The stereo disparity computation is significantly more complex than matrix multiplication, requiring multiple steps such that the entire process cannot easily be implemented as a single kernel.

The stereo disparity matching problem is to generate a disparity image given a pair of images from a stereo camera rig. Each pixel \((y, x)\) in the disparity image has a value \(v\) specifying a pixel offset that matches the pixel at \((y, x)\) in the left image to the pixel at \((y, x + v)\) in the right image. These matched pixels correspond to the same physical point in scene viewed by the cameras. This disparity image can then be used to compute depth information and create a 3D point cloud describing the scene, which is useful in a variety of practical applications like robotics.

The stereo disparity method implemented used the Census transform\([12]\) both with simple local window matching and with a partial implementation of the semi-global matching (SGM) technique described by Hirschmuller\([7]\). Testing during development was done on sample image pairs from the Middlebury 2005 Stereo Dataset\([7]\). Both a CPU implementation and a Bacon implementation were written.

Although a complete implementation of the SGM algorithm was not completed and neither Bacon implementation has been properly optimized, the results are promising. The simple local window matcher in Bacon produces the same output as the CPU version. The partial SGM implementation produces a more accurate disparity image but takes longer to run.
Including specialization time, the Bacon version of the local window matcher takes almost as much time as the CPU version, but on subsequent calls it takes less than 0.2 seconds which is more than a 10x speedup. This provides a good example of the practicality of the value specialization mechanism; for processing video an extra computation cost on the first frame will be quickly amortized over subsequent frames.

6 Future Work

The Bacon system could benefit from a number of extensions to improve its performance, generality, and utility to developers. One obvious area of improvement would be to automatically determine the best factor for loop unrolling rather than expecting it to be tuned manually. The unrolling analysis could also be extended to the implicit parallel “loops” created by the range of the computation; optimally, it should be possible to generate kernels like the blocked matrix multiplication shown from the naive matrix multiplication kernel. Another simple improvement would be to perform strip mining (Wolfe [11], section 9.8) and generate explicit vector code for loops.

Just in time specialization as a method to improve performance on parallel computations seems very promising in general, but there are some limitations imposed by the use of OpenCL as a compiler target. An implementation of this technique targeting a parallel processor at a lower level would allow for more flexibility and much faster specialization times.

7 Conclusion

We have shown that Bacon allows a high performance GPU matrix multiplication kernel to be written in a naive style and executed with nearly the performance of a hand-vectorized OpenCL kernel due to the performance benefits of just in time specialization. Further, we have shown that by re-writing that kernel with a generalized block strategy and selecting appropriate loop unrolling settings, the performance of the hand vectorized OpenCL kernel can be exceeded.

We are distributing this tool in the hope that it will be practically useful for developing kernels targeting OpenCL compatible GPU devices.

References

