Lecture 7
Tuesday, 4/6/10

Approximation Algorithms
Approximation Algorithms

Chapter 35
Motivation: Some Techniques for Treating NP-Complete Problems

- **Approximation Algorithms**
- **Heuristic Upper or Lower Bounds**
 - Greedy, Simulated Annealing, Genetic “Alg”, AI
- **Mathematical Programming**
 - Linear Programming for part of problem
 - Integer Programming
 - Quadratic, Convex Programming...
- **Search Space Exploration:**
 - Gradient Descent, Local Search, Pruning, Subdivision
- **Randomization, Derandomization**
- **Leverage/Impose Problem Structure**
- **Leverage Similar Problems**
Basic Concepts

Definitions
Definitions

• **Approximation Algorithm**
 - produces “near-optimal” solution
 - Algorithm has *approximation ratio* $\rho(n)$ if:
 $$\max \left(\frac{C}{C^*}, \frac{C^*}{C} \right) \leq \rho(n)$$

 - C = cost of algorithm’s solution
 - C^* = cost of optimal solution
 - n = number of inputs = size of instance

• **Approximation Scheme**
 - $(1+\varepsilon)$-approximation algorithm for fixed ε
 - $\varepsilon > 0$ is an input
 - **Polynomial-Time Approximation Scheme**
 - time is polynomial in n
 - **Fully Polynomial-Time Approximation Scheme**
 - time is also *polynomial* in $(1/\varepsilon)$
 - constant-factor decrease in ε causes only constant-factor running-time increase

source: 91.503 textbook Cormen et al.
Resources beyond textbook…

• UMass Lowell course taught by Prof. Jie Wang.
Overview

- VERTEX-COVER
 - Polynomial-time 2-approximation algorithm
- TSP
 - TSP with triangle inequality
 - Polynomial-time 2-approximation algorithm
 - TSP without triangle inequality
 - Negative result on polynomial-time $\rho(n)$-approximation algorithm
- MAX-3-CNF Satisfiability
 - Randomized $\rho(n)$-approximation algorithm
- SET-COVER
 - Polynomial-time $\rho(n)$-approximation algorithm
 - $\rho(n)$ is a logarithmic function of set size
- SUBSET-SUM
 - Fully polynomial-time approximation scheme
Vertex Cover

Polynomial-Time 2-Approximation Algorithm
Vertex Cover of an undirected graph $G = (V, E)$ is a subset $V' \subseteq V$ such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$ or both

NP-Complete

(via reduction from CLIQUE in Ch. 34 of Cormen et al.)

[GT1] **VERTEX COVER**

INSTANCE: Graph $G = (V, E)$, positive integer $K \leq |V|$.
QUESTION: Is there a vertex cover of size K or less for G, i.e., a subset $V' \subseteq V$ with $|V'| \leq K$ such that for each edge $(u, v) \in E$ at least one of u and v belongs to V'?

Reference: [Karp, 1972]. Transformation from 3SAT (see Chapter 3).
Comment: Equivalent complexity to INDEPENDENT SET with respect to restrictions on G. Variation in which the subgraph induced by V' is required to be connected is also NP-complete, even for planar graphs with no vertex degree exceeding 4 [Garey and Johnson, 1977a]. Easily solved in polynomial time if V' is required to be both a vertex cover and an independent set for G. The related EDGE COVER problem, in which one wants the smallest set $E' \subseteq E$ such that every $v \in V$ belongs to at least one $e \in E'$, can be solved in polynomial time by graph matching (e.g., see [Lawler, 1976a]).

source: Garey & Johnson
Approximate Vertex Cover

Approximate Vertex Cover

1. $C \leftarrow \emptyset$
2. $E' \leftarrow E[G]$
3. **while** $E' \neq \emptyset$
4. **do** let (u, v) be an arbitrary edge of E'
 5. \[C \leftarrow C \cup \{u, v\} \]
6. **remove** from E' every edge incident on either u or v
7. **return** C (vertex cover)

Figure 35.1 The operation of **Approximate Vertex Cover**. (a) The input graph G, which has 7 vertices and 8 edges. (b) The edge (b, c), shown heavy, is the first edge chosen by **Approximate Vertex Cover**. Vertices b and c, shown lightly shaded, are added to the set C containing the vertex cover being created. Edges (a, b), (c, e), and (c, d), shown dashed, are removed since they are now covered by some vertex in C. (c) Edge (e, f) is chosen; vertices e and f are added to C. (d) Edge (d, g) is chosen; vertices d and g are added to C. (e) The set C, which is the vertex cover produced by **Approximate Vertex Cover**, contains the six vertices b, c, d, e, f, g. (f) The optimal vertex cover for this problem contains only three vertices: $b, d,$ and e.

source: 91.503 textbook Cormen et al.
Theorem: APPROX-VERTEX-COVER is a polynomial-time 2-approximation algorithm.

Proof: Let C^* be an optimal cover

C be cover from APPROX - VERTEX - COVER

$A \leftarrow$ edges chosen by APPROX - VERTEX - COVER

Observe: no 2 edges of A share any vertices in C due to removal of incident edges

Any vertex cover must include ≥ 1 endpoint of each edge in A \[|C^*| \geq |A| \]

APPROX-VERTEX-COVER adds both endpoints of each edge of A \[|C| = 2|A| \leq 2|C^*| \]

transitivity \[|C| \leq 2|C^*| \] \[|C| / |C^*| \leq 2 \]

Algorithm runs in time polynomial in n.
Traveling Salesman

TSP with triangle inequality
Polynomial-time 2-approximation algorithm

TSP without triangle inequality
Negative result on polynomial-time $\rho(n)$-approximation algorithm
A Hamiltonian Cycle of an undirected graph $G=(V,E)$ is a simple cycle that contains each vertex in V.

NP-Complete (via reduction from VERTEX-COVER in Ch. 34 of Cormen et al.)

Schlegl diagram of dodecahedron: 12 sides (one of Platonic solids)

Figure 34.2 (a) A graph representing the vertices, edges, and faces of a dodecahedron, with a Hamiltonian cycle shown by shaded edges. (b) A bipartite graph with an odd number of vertices. Any such graph is non-Hamiltonian.
Traveling Salesman Problem (TSP)

TSP Tour of a complete, undirected, **weighted** graph \(G=(V,E)\) is a Hamiltonian Cycle with a designated starting/ending vertex.

TSP Decision Problem:

\[\{(G, c, k) : \text{cost } c(V \times V) \rightarrow Z \land k \in Z \land G \text{ has TSP - tour of cost } \leq k\}\]

NP-Complete (via reduction from HAM-CYCLE in Ch. 34 of Cormen et al.)
Minimum Spanning Tree: Greedy Algorithms

Time:
- $O(|E| \log |E|)$ given fast FIND-SET, UNION

Invariant: Minimum weight spanning forest

MST-Kruskal (G, w)

1. $A \leftarrow \emptyset$
2. for each vertex $v \in V[G]$
3. do **MAKE-SET**(v)
4. sort the edges of E by nondecreasing weight w
5. for each edge $(u, v) \in E$, in order by nondecreasing weight
6. do if **FIND-SET**(u) \neq **FIND-SET**(v)
7. then $A \leftarrow A \cup \{(u, v)\}$
8. **UNION**(u,v)
9. return A

Produces minimum weight tree of edges that includes every vertex.

Become single tree at end

Time:
- $O(|E| \log |V|) = O(|E| \log |E|)$ slightly faster with fast priority queue

Invariant: Minimum weight tree

MST-Prim (G, w, r)

1. $Q \leftarrow V[G]$
2. for each $u \in Q$
3. do $key[u] \leftarrow \infty$
4. $key[r] \leftarrow 0$
5. $\pi[r] \leftarrow \text{NIL}$
6. while $Q \neq \emptyset$
7. do $u \leftarrow \text{EXTRACT-MIN}(Q)$
8. for each $v \in Adj[u]$
9. do if $v \in Q$ and $w(u, v) < key[v]$
10. then $\pi[v] \leftarrow u$
11. $key[v] \leftarrow w(u, v)$

Spans all vertices at end

for Undirected, Connected, Weighted Graph $G=(V,E)$

source: 91.503 textbook Cormen et al.
TSP with Triangle Inequality

Approx-TSP-Tour \((G, c)\)

1. Select a vertex \(r \in V[G]\) to be a “root” vertex.
2. Compute a minimum spanning tree \(T\) for \(G\) from root \(r\) using \(\text{MST-PRIM}(G, c, r)\) (Why Prim?)
3. Let \(L\) be the list of vertices visited in a preorder tree walk of \(T\).
4. Return the Hamiltonian cycle \(H\) that visits the vertices in the order \(L\).

Cost Function Satisfies Triangle Inequality

\[\forall u, v, w \in V \quad c(u, w) \leq c(u, v) + c(v, w) \]

Final approximate tour (removes vertex duplication) vs. **optimal tour** (not necessarily found by approximation algorithm).

“full walk” = abcbbadefegeda
Theorem: APPROX-TSP-TOUR is a polynomial-time 2-approximation algorithm for TSP with triangle inequality.

Proof: Algorithm runs in time polynomial in \(n = |V| \).

Let \(H^* \) be an optimal tour and \(T \) be a MST
\[
c(T) \leq c(H^*) \quad \text{(since deleting 1 edge from a tour creates a spanning tree)}
\]

Let \(W \) be a full walk of \(T \) (lists vertices when they are first visited and when returned to after visiting subtree)
\[
c(W) = 2c(T) \quad \text{(since full walk traverses each edge of \(T \) twice)}
\]
\[
c(W) \leq 2c(H^*)
\]

Now make \(W \) into a tour \(H \) using triangle inequality.
\[
c(H) \leq c(W) \quad \text{(New inequality holds since \(H \) is formed by deleting duplicate vertices from \(W \))}
\]
\[
c(H) \leq 2c(H^*)
\]
Theorem: If \(P \neq NP \), then for any constant \(\rho \geq 1 \), there is no polynomial-time approximation algorithm with ratio \(\rho \) for TSP without triangle inequality.

Proof: (by contradiction) Suppose there is one --- call it \(A \).

Showing how to use \(A \) to solve NP-complete Hamiltonian Cycle problem \(\rightarrow \) contradiction!

Convert instance \(G \) of Hamiltonian Cycle into instance of TSP (in polynomial time):

\[
E' = \{(u, v) : u, v \in V, u \neq v\} \quad (G'=(V,E') \text{ is complete graph on } V)
\]

\[
c(u,v) = \begin{cases}
1 & (u,v) \in E \\
\rho |V| + 1 & \text{otherwise}
\end{cases}
\]

(assign integer cost to each edge in \(E' \))

For TSP problem \((G',c) \):

- \(G \) has Hamiltonian Cycle \(\rightarrow (G',c) \) contains tour of cost \(|V| \)
- \(G \) does not have Hamiltonian Cycle \(\rightarrow \) Tour of \(G' \) must use some edge not in \(E \)

Cost of that tour of \(G' \) \(\geq (\rho |V| + 1) + (|V| - 1) = \rho |V| + |V| > \rho |V| \)

Can use \(A \) on \((G',c) \)! A finds tour of cost at most \(\rho \) (length of optimal tour of \(G' \))

- \(G \) has Hamiltonian Cycle \(\rightarrow A \) finds tour of cost at most \(\rho |V| \) \(\rightarrow \) cost = \(|V| \)
- \(G \) does not have Hamiltonian Cycle \(\rightarrow A \) finds tour of cost \(> \rho |V| \)

If \(P \neq NP \), solving NP-complete Hamiltonian cycle in polynomial time is a contradiction!
MAX-3-CNF Satisfiability

3-CNF Satisfiability Background
Randomized Algorithms
Randomized MAX-3-CNF SAT Approximation Algorithm
Background on Boolean Formula Satisfiability

- Boolean Formula Satisfiability: Instance of language SAT is a boolean formula ϕ consisting of:
 - n boolean variables: x_1, x_2, \ldots, x_n
 - m boolean connectives: boolean function with 1 or 2 inputs and 1 output
 - e.g. AND, OR, NOT, implication, iff
 - truth, satisfying assignments notions apply

$SAT = \{ \langle \phi \rangle : \phi$ is a satisfiable boolean formula$\}$

NP-Complete (via reduction from CIRCUIT-SAT in Ch. 34 of Cormen et al.)
MAX-3-CNF Satisfiability
(continued)

• Background on 3-CNF-Satisfiability
 • Instance of language SAT is a boolean formula
 \(\phi \) consisting of:
 • literal: variable or its negation
 • CNF = conjunctive normal form
 • conjunction: AND of clauses
 • clause: OR of literal(s)
 • 3-CNF: each clause has **exactly 3** distinct literals

MAX-3-CNF Satisfiability: optimization version of 3-CNF-SAT
 - Maximization: satisfy as many clauses as possible
 - Input Restrictions:
 - exactly 3 literals/clause
 - no clause contains both variable and its negation (this assumption can be removed)

NP-Complete (via reduction from SAT in Ch. 34 of Cormen et al.)

source: 91.503 textbook Cormen et al.
Definition

- Randomized Algorithm has approximation ratio $\rho(n)$ if, for expected cost C of solution produced by randomized algorithm:

$$\max \left(\frac{C}{C^*}, \frac{C^*}{C} \right) \leq \rho(n)$$

size of input = n

source: 91.503 textbook Cormen et al.
Randomized Approximation Algorithm for MAX-3-CNF SAT

Theorem: Given an instance of MAX-3-CNF satisfiability with n variables x_1, x_2, \ldots, x_n with m clauses, the randomized algorithm that independently sets each variable to 1 with probability $1/2$ and to 0 with probability $1/2$ is a randomized $8/7$-approximation algorithm.

Proof: Independently set each variable to 0 or 1 with probability $1/2$ indicator random variable $Y_i = I\{\text{event that clause } i \text{ is satisfied}\}$

$Pr\{\text{clause } i \text{ is not satisfied}\} = (1/2)^3 = 1/8 \quad Pr\{\text{clause } i \text{ is satisfied}\} = 1 - (1/8) = 7/8$

Lemma: Given a sample space S and an event A in the sample space S,

Let $X_A = I\{A\}$. Then $E[X_A] = Pr\{A\}$.

By Lemma: $E[Y_i] = 7/8 \quad$ Let $Y = Y_1 + Y_2 + \cdots + Y_m$

$E[Y] = E\left[\sum_{i=1}^{m} Y_i\right] = \sum_{i=1}^{m} E[Y_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7m}{8} = \text{expected cost } C$

number of satisfied clauses $\leq m \Rightarrow C^* \leq m \Rightarrow \frac{C^*}{C} \leq \frac{m}{7m/8} = \frac{8}{7} = \rho(n)$
Set Cover

Greedy Approximation Algorithm

polynomial-time $\rho(n)$-approximation algorithm

$\rho(n)$ is a logarithmic function of set size
Set Cover Problem

Instance \((X, F)\):

- finite set \(X\) (e.g. of points)
- family \(F\) of subsets of \(X\)

\[X = \bigcup_{S \in F} S \]

Problem: Find a minimum-sized subset \(C \subseteq F\) whose members cover all of \(X\):

\[X = \bigcup_{S \in C} S \]

NP-Complete (via reduction from VERTEX-COVER as noted in Ch. 35 of Cormen et al.)

Source: 91.503 textbook Cormen et al.
Greedy Set Covering Algorithm

Greedy-Set-Cover(X, F)

1. $U \leftarrow X$
2. $C \leftarrow \emptyset$
3. while $U \neq \emptyset$
 4. do select an $S \in F$ that maximizes $|S \cap U|$
 5. $U \leftarrow U - S$
 6. $C \leftarrow C \cup \{S\}$
4. return C

Greedy: select set that covers the most uncovered elements
Theorem: GREEDY-SET-COVER is a polynomial-time $\rho(n)$-approximation algorithm for $\rho(n) = H(\max \{|S| : S \in F\})$

Proof:

The dth harmonic number $H_d = \sum_{i=1}^{d} \frac{1}{i}$ and $H(0) = 0$. Algorithm runs in time polynomial in n.

$S_i = i$th subset selected by algorithm.

selecting S_i costs 1

$S_i = i$th subset selected by algorithm.

(cnotational caveat)

$\mathcal{c}_x = \text{cost of element } x \in X$

paid only when x is covered for the first time

$\mathcal{c}_x = \frac{1}{\left| S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1}) \right|}$

(elements already covered by first $i-1$ chosen sets)

assume x is covered for the first time by S_i

(spread cost evenly across all elements covered for first time by S_i)

Number of elements covered for first time by S_i
Theorem: \textsc{Greedy-Set-Cover} is a polynomial-time $\rho(n)$-approximation algorithm for $\rho(n) = H(\max\{|S|: S \in \mathcal{F}\})$.

Proof: (continued)

Let C^* be an optimal cover,\hfill $|C| = \sum_{x \in X} c_x$ \hspace{2cm} 1 unit is charged at each stage of algorithm

C be cover from \textsc{Greedy - Set - Cover}.\hfill \sum\sum_{S \in C^*} \left(\sum_{x \in S} c_x \right)$ \hspace{2cm} Each x is in ≥ 1 S in C^* \hfill \sum\sum_{S \in C^*} \left(\sum_{x \in S} c_x \right) \geq \sum_{x \in X} c_x$

Cost assigned to optimal cover:

\[|C| \leq \sum\sum_{S \in C^* \setminus x \in S} c_x\]
Theorem: GREEDY-SET-COVER is a polynomial-time $\rho(n)$-approximation algorithm for $\rho(n) = H(\max \{|S| : S \in F\})$

Proof: (continued)

How does this relate to harmonic numbers??

dth harmonic number $H_d = \sum_{i=1}^{d} \frac{1}{i} = H(d)$

We’ll show that: $\sum_{x \in S} c_x \leq H(|S|)$ for any set $S \in F$

And then conclude that: $|C| \leq \sum_{S \in C^*} H(|S|) \leq |C^*| H(\max \{|S| : S \in F\})$
Set Cover (proof continued)

Proof of: \[\sum_{x \in S} c_x \leq H(|S|) \]
for any set \(S \in F \)

\[u_i = |S - (S_1 \cup S_2 \cup \cdots \cup S_i)| \]
For some set \(S \): Number of elements of \(S \) remaining uncovered after \(S_1 \ldots S_i \) selected

\[\sum_{x \in S} c_x = \sum_{i=1}^k \left((u_{i-1} - u_i) \frac{1}{S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})} \right) \]
\(k = \) least index for which \(u_k = 0 \).

\[\sum_{x \in S} c_x \leq \sum_{i=1}^k \left((u_{i-1} - u_i) \frac{1}{u_{i-1}} \right) \]
Since, due to greedy nature of algorithm:

\[|S_i - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| \geq |S - (S_1 \cup S_2 \cup \cdots \cup S_{i-1})| = u_{i-1} \]

\[= \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{u_{i-1}} \leq \sum_{i=1}^k \sum_{j=u_i+1}^{u_{i-1}} \frac{1}{j} \]
since \(j \leq u_{i-1} \)

\[= \sum_{i=1}^k \left(\sum_{j=1}^{u_{i-1}} \frac{1}{j} - \sum_{j=1}^{u_i} \frac{1}{j} \right) \]

\[= \sum_{i=1}^k \left(H(u_{i-1}) - H(u_i) \right) = H(u_0) - H(u_k) = H(u_0) - H(0) = H(u_0) = H(|S|) \]
telelescoping sum
Subset-Sum

Exponential-Time Exact Algorithm

Fully Polynomial-Time Approximation Scheme
Subset-Sum Problem

Instance \((S, t)\):

\[S = \{x_1, x_2, \ldots, x_n\} \quad \text{positive integers} \]

Decision Problem:

\[\exists S' \subseteq S : \sum_{s \in S'} s = t ? \]

Optimization Problem seeks subset with largest sum \(\leq t \)

NP-Complete (via reduction from 3-CNF-SAT in Ch. 34 of Cormen et al.)

source: 91.503 textbook Cormen et al.
Exponential-Time
Exact Algorithm

\[P_i = \text{set of values obtainable by selecting subset of } \{x_1, x_2, \ldots, x_i\} \text{ and summing elements.} \]

\[L_i \text{ is sorted list of every element of } P_i \leq t \]

\[L_i = \text{list of sums of subsets of } \{x_1, x_2, \ldots, x_i\} \leq t \]

MERGE-LISTS (\(L, L' \)) returns sorted list = merge of sorted \(L, L' \) with duplicates removed.

EXACT-SUBSET-SUM (\(S, t \))

1. \(n \leftarrow |S| \)
2. \(L_0 \leftarrow \langle () \rangle \)
3. \(\text{for } i \leftarrow 1 \text{ to } n \)
4. \(\text{do } L_i \leftarrow \text{MERGE-LISTS}(L_{i-1}, L_{i-1} + x_i) \)
5. \(\text{remove from } L_i \text{ every element that is greater than } t \)
6. \(\text{return the largest element in } L_n \)

Identity:

\[P_i = P_{i-1} \cup (P_{i-1} + x_i) \]
Theorem:

APPROX-SUBSET-SUM is a fully polynomial-time approximation scheme for subset-sum.

Proof: see textbook

(differs from 2nd edition)

\[|L_i| \leq \frac{3n \ln t}{\varepsilon} + 2 \]

source: 91.503 textbook Cormen et al.