Chapter 4 Lecture Notes (Section 4.2: The “Halting” Problem)

David Martin
dm@cs.uml.edu

With modifications by Prof. Karen Daniels, Fall 2010

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.
Back to Σ_1

- So the fact that Σ_1 is not closed under complement means that there exists some language L that is not recognizable by any TM.

- By Church-Turing thesis this means that no imaginable finite computer, even with infinite memory, could recognize this language L!
Non-recognizable languages

- We proceed to prove that non-Turing recognizable languages exist, in two ways:
 - A nonconstructive proof using Georg Cantor’s famous 1873 diagonalization technique, and then
 - An explicit construction of such a language.
A nonconstructive proof

Let $L \subseteq \{0,1\}^*$ be defined by:

$$L = \begin{cases}
0^* \text{ if Hillary Clinton is president on February 1, 2013} \\
1^* \text{ otherwise}
\end{cases}$$

Is L decidable?

No; there exists a machine M that recognizes the appropriate language; we just don’t know what machine it is right now.
Learning how to count

- **Definition**: Let A and B be sets. Then we write $A \approx B$ and say that A is **equinumerous** to B if there exists a one-to-one, onto function (a “correspondence”) $f: A \rightarrow B$

- Note that this is a purely mathematical definition: the function f does not have to be expressible by a Turing machine or anything like that.

- **Example**: $\{1, 3, 2\} \approx \{\text{six, seven, BBCCD}\}$

- **Example**: $\mathbb{N} \approx \mathbb{Q}$ (textbook example 4.15)
 - See next slide...
Learning how to count (continued)

Example: \(N \approx Q \) (textbook example 4.15)

\[\begin{array}{cccccc}
1 & 1 \\
2 & 2 \\
3 & 3 \\
4 & 4 \\
5 & 5 \\
\end{array} \]

Source: Sipser textbook
Countability

- **Definition** A set S is **countable** if S is finite or $S \approx \mathbb{N}$.

- Saying that S is countable means that you can line up all of its elements, one after another, and cover them all.

- Note that \mathbb{R} is *not* countable (Theorem 4.17), basically because choosing a single real number requires making infinitely many choices of what each digit in it is (see next slide).
Countability (continued)

- **Theorem 4.17**: \(\mathbb{R} \) is not countable.

- **Proof Sketch**: By way of contradiction, suppose \(\mathbb{R} \approx \mathbb{N} \) using correspondence \(f \).

 Construct \(x \in \mathbb{R} \) such that \(x \) is not paired with anything in \(\mathbb{N} \), providing a contradiction.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
<th>(x \in (0,1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14159...</td>
<td>(x) is not (f(n)) for any (n) because it differs from (f(n)) in (n)th fractional digit.</td>
</tr>
<tr>
<td>2</td>
<td>5.55555...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.12345...</td>
<td>(x = 0.4641...)</td>
</tr>
<tr>
<td>4</td>
<td>0.50000...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Caveat: How to circumvent \(0.1999... = 0.2000... \) problem?

Source: Sipser textbook
A non-Σ_1 language

Each point is a language in this Venn diagram.
Strategy

- We’ll show that there are more (a lot more) languages in ALL than there are in Σ_1
 - Namely, that Σ_1 is countable but ALL isn’t countable
 - Which implies that $\Sigma_1 \neq$ ALL
 - Which implies that there exists some L that is not in Σ_1

- For simplicity and concreteness, we’ll work in the universe of strings over the alphabet $\{0,1\}$.
Countability of Σ_1

- **Theorem** Σ_1 is countable
- **Proof** The strategy is simple. Σ_1 is the class of all languages that are Turing-recognizable. So each one has (at least) one TM that recognizes it. We’ll concentrate on listing those TMs.
Countability of TM

- Let $\text{TM} = \{ <M> \mid M \text{ is a Turing Machine with } \Sigma = \{0,1\} \}$
 - Notation: $<M>$ means the string encoding of the object M
 - Previously, we thought of our TMs as abstract mathematical things: drawings on the board, or 7-tuples: $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$
 - But just as we can encode every C++ program as an ASCII string, surely we can also encode every TM as a string
 - It’s not hard to specify precisely how to do it—but it doesn’t help us much either, so we won’t bother
 - Just note that in our full specification of a TM $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$, each element in the list is finite by definition
 - So writing down the sequence of 7 things can be done in a finite amount of text
- In other words, each $<M>$ is a string
Countability of TM

- Now we make a list of all possible strings in lexicographical order,
- Cross out the ones that are not valid encodings of Turing Machines,
- And we have a mapping \(f : \mathbb{N} \to \text{TM} \)
 - \(f(1) = \) first (smallest) TM encoding on list
 - \(f(2) = \) second TM encoding on list
 - ...
- This is part of textbook’s proof of Corollary 4.18 (Some languages are not Turing-recognizable).
Back to countability of Σ_1

- Now consider the list $L(f(1)), L(f(2)), \ldots$
 - Turns each TM enumerated by f into a language
 - So we can define a function $g : \mathbb{N} \rightarrow \Sigma_1$ by $g(i) = L(f(i))$, where $f(i)$ returns the i^{th} Turing machine
 - Now: is this a correspondence? Namely,
 - Is it onto?
 - Is it one-to-one?
Fixing \(g : \mathbb{N} \rightarrow \Sigma_1 \)

- Go ahead and make the list \(g(1), g(2), \ldots \)
- But cross out each element that is a repeat, removing it from the list
- Then let \(h : \mathbb{N} \rightarrow \Sigma_1 \) be defined by
 \[h(i) = \text{the } i^{\text{th}} \text{ element on the reduced list} \]
- Then \(h \) is both one-to-one and onto
- **Thus \(\Sigma_1 \) is countable**
What about ALL?

- **Theorem** (Cantor, 1873) For every set \(A \), \(A \not\subseteq \mathcal{P}(A) \)
 - See next several slides for proof.
 - See textbook for a different way to show ALL is uncountable using characteristic sequence associated with (uncountable) set of all infinite binary sequences.

- Remember ALL = \(\mathcal{P}(\{0,1\}^*) \)
 - set of all (languages) = set of all (subsets of \(\{0,1\}^* \))

- Note that \(\{0,1\}^* \) is countable
 - Just list all of the strings in lexicographical order

- **Corollary to Theorem** ALL = \(\mathcal{P}(\{0,1\}^*) \) is uncountable
 - So \(\Sigma_1 \) is countable but ALL isn’t
 - So they're not equal
Cantor’s Theorem

Theorem For every set A, \(A \nsubseteq \mathcal{P}(A) \)

Proof We’ll show by contradiction that no function \(f: A \rightarrow \mathcal{P}(A) \) is onto. So suppose \(f: A \rightarrow \mathcal{P}(A) \) is onto. We define a set \(K \subseteq A \) in terms of it:

\[
K = \{ x \in A \mid x \notin f(x) \}
\]

Since \(K \subseteq A \), \(K \in \mathcal{P}(A) \) as well (by definition of \(\mathcal{P} \)). Since \(f \) is onto, there exists some \(z \in A \) such that \(f(z) = K \). Looking closer,

Case 1: If \(z \in K \) then \(z \notin f(z) \) then \(z \notin K \)

by definition of \(K \)

by definition of \(z \)

so \(z \in K \) certainly can’t be true...
Cantor’s Theorem

\[
K = \{ x \in A \mid x \notin f(x) \}
\]

unchanged

\[
\begin{align*}
K & \in \mathcal{P}(A) \\
z & \in A \text{ and } f(z) = K
\end{align*}
\]

On the other hand,

Case 2: If \(z \notin K \) \(\Rightarrow \) \(z \in f(z) \) \(\Rightarrow \) \(z \in K \)

by definition of \(K \)

by definition of \(z \)

so \(z \notin K \) can’t be true either! \quad \text{QED}
Cantor’s Theorem: Example

- For every proposed $f : A \to \mathcal{P}(A)$, the theorem constructs a set $K \in \mathcal{P}(A)$ that is not $f(x)$ for any x

- Let $A = \{1, 2, 3\}$
 $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, \{1, 2, 3\}\}$

- Propose $f : A \to \mathcal{P}(A)$, show K
Diagonalization

- All we’re really doing is identifying the squares on the diagonal and making them different than what’s in our set K
- So that we’re guaranteed K ≠ f(1), K ≠ f(2), …
- The construction works for infinite sets too

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{ _ , _ , _ }</td>
</tr>
<tr>
<td>2</td>
<td>{ _ , _ , □, _ }</td>
</tr>
<tr>
<td>3</td>
<td>{ _ , _ , _ , □ }</td>
</tr>
</tbody>
</table>
Non-recognizable languages

- So we conclude that there exists some $L \in \text{ALL} - \Sigma_1$ (many such languages)
- But we don’t know what any L looks like exactly
- Turing constructed such an L also using diagonalization (but not the relation)
- We now turn our attention to it
Programs that process programs

- In §4.1, we considered languages such as
 \[A_{\text{CFG}} = \{ <G,w> \mid G \text{ is a CFG and } w \in L(G) \} \]

- Each element of \(A_{\text{CFG}} \) is a *coded pair*
 - Meaning that the grammar \(G \) is encoded as a string *and*
 - \(w \) is an arbitrary string *and*
 - \(<G,w> \) contains both pieces, in order, in such a way that the two pieces can be easily extracted

- The question “does grammar \(G_1 \) generate the string 00010?” can then be phrased equivalently as:
 - Is \(<G_1,00010> \in A_{\text{CFG}}? \)
Programs that process programs

- \(A_{\text{CFG}} = \{ <G,w> \mid G \text{ is a CFG and } w \in L(G) \} \)

- The *language* \(A_{\text{CFG}} \) somehow represents the question “does *this* grammar accept *that* string?”

- Additionally we can ask: is \(A_{\text{CFG}} \) itself a regular language? context free? decidable? recognizable?
 - We showed previously that \(A_{\text{CFG}} \) is decidable (as is almost everything similar in §4.1)
A_{TM} and the Universal TM

- $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}$
- We will show that $A_{TM} \in \Sigma_1 - \Sigma_0$
 - (It’s recognizable but not decidable)
- **Theorem** A_{TM} is Turing-recognized by a fixed TM called U (the Universal TM)
 - This is not stated as a theorem in the textbook (it does appear as part of proof of **Theorem 4.11: A_{TM} is undecidable**), but should be: it’s really important
$A_{TM} = L(U)$

$A_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \in L(M) \}$

U is a 3-tape TM that keeps data like this:

1. $<M>$
 never changes
2. q
 a state name
3. $c_1 c_2 c_3 \ldots$
 tape contents & head pos

On startup, U receives input $<M,w>$ and writes $<M>$ onto tape 1 and w onto tape 3. (If the input is not of the form $<M,w>$, then U rejects it.) From $<M>$, U can extract the encoded pieces $(Q,\Sigma,\Gamma,\delta,q_0,q_{acc},q_{rej})$ at will. It continues by extracting and writing q_0 onto tape 2.
\[A_{TM} = L \left(U \right) \]

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \} \]

1. \(< M >\) \(\text{never changes}\)
2. \(q\) \(\text{a state name}\)
3. \(c_1 \ c_2 \ c_3 \ldots\) \(\text{tape contents \& head pos}\)

To simulate a single computation step, \(U\) fetches the current character \(c\) from tape 3, the current state \(q\) on tape 2, and looks up the value of \(\delta(q,c)\) on tape 1, obtaining a new state name, a new character to write, and a direction to move. \(U\) writes these on tapes 2 and 3 respectively.

If the new state is \(q_{acc}\) or \(q_{rej}\) then \(U\) accepts or rejects, respectively. Otherwise it continues with the next computation step.
The Universal TM U

- This U is **hugely important**: it’s the theoretical basis for *programmable* computers.
- It says that there is a *fixed* machine U that can take computer programs as *input* and behave just like each of those programs
 - Note that U is **not** a decider
 - See VMware
- Since $A_{TM} = L(U)$, we have shown that A_{TM} is Turing-recognizable (Σ_1)
The “Halting” Problem

- $A_{TM} = \{<M,w> | M \text{ is a TM and } w \in L(M)\}$

- This appears in our textbook as:
 - $A_{TM} = \{<M,w> | M \text{ is a TM and } M \text{ accepts } w\}$
 - This emphasizes the fact that U might loop (i.e. might not halt) on input $<M,w>$.
 - A_{TM} is therefore sometimes called the halting problem.
 - We use "" here due to Chapter 5’s discussion...

- A_{TM} is called the acceptance problem in Chapter 5
- The “real” halting problem is defined there as:
 - $HALT_{TM} = \{<M,w> | M \text{ is a TM and } M \text{ halts on input } w\}$
A_{TM} is undecidable

Theorem 4.11 (Turing) $A_{TM} \notin \Sigma_0$

Proof Suppose that $A_{TM} = L(H)$ where H is a decider. We’ll show that this leads to a contradiction.

Let D be a TM that behaves as follows:

1. Input x
2. If x is not of the form $<M>$ for some TM M, then D rejects
3. Simulate H on input $<M, <M>>$
 - If H accepts $<M, <M>>$, then D rejects
 - If H rejects $<M, <M>>$, then D accepts

$$H(<M, w>) = \begin{cases}
\text{accept} & \text{if } M \text{ accepts } w \\
\text{reject} & \text{if } M \text{ does not accept } w
\end{cases}$$
“Simulate H”

- Steps 1 and 2 are not so hard to imagine
- How does D “simulate H on (some other input)”?
 - If someone creates an H, we follow this outline to build D — which has the entire H program built in as a subroutine
 - Note we run H on a different input than the one that D is given
- Also, we didn’t say what D does if H goes into an infinite loop
 - It’s OK because H does not do that, by the assumption that H is a decider
Language accepted by D

(Repeat) D behaves as follows:

1. D: input x
2. if x is not of the form $<M>$ for some TM M, then D rejects
3. simulate H on input $<M, <M> >$
 - If H accepts $<M, <M> >$, then D rejects
 - If H rejects $<M, <M> >$, then D accepts

So $L(D)=\{ <M> | H$ rejects $<M, <M> > \}$

Now H is a recognizer (even a decider) for A_{TM}, so if H rejects $<M, <M> >$ then it means that the machine M does not accept $<M>$.

So $L(D)=\{ <M> | <M> \notin L(M) \}$
Impossible machine

- So $L(D) = \{ <M> \mid <M> \notin L(M) \}$
- What if we give a copy of D’s own description $<D>$ to itself as input? As in Cantor’s theorem, we have trouble:
 - $<D> \in L(D) \Rightarrow <D> \notin L(D)$
 - $<D> \notin L(D) \Rightarrow <D> \in L(D)$
- So this D can’t exist. But it was defined as a fairly straightforward wrapper around H: so H must not exist either. That is, there is no decider for A_{TM}. QED
To summarize...

H accepts \(<M,w>\) exactly when M accepts w.

D rejects \(<M>\) exactly when M accepts \(<M>\).

D rejects \(<D>\) exactly when D accepts \(<D>\).

contradiction!
Diagonalization in this proof?

Mi is a TM.

Blank entry implies either loop or reject.

Now consider H, which is a decider.
Diagonalization in this proof? (cont.)

D computes the opposite of each diagonal entry because its behavior is opposite H’s behavior on input \(<M_i, <M_i>>\).

Cannot compute opposite of this entry itself!

Source: Sipser textbook
Current landscape

Each point is a language in this Venn diagram.

\[A_{\text{TM}} \in \Sigma_1 - \Sigma_0 \]
Decidability versus recognizability

Theorem 4.22 For every language L, $L \in \Sigma_0 \iff (L \in \Sigma_1 \text{ and } L^c \in \Sigma_1)$

Recall that complement of a language is the language consisting of all strings that are not in that language.

Proof The \Rightarrow direction is easy, because $\Sigma_0 \subseteq \Sigma_1$ and Σ_0 is closed under complement.

For the \Leftarrow direction, suppose that $L \in \Sigma_1$ and $L^c \in \Sigma_1$. Then there exist TMs so that $L(M_1) = L$ and $L(M_2) = L^c$. To show that $L \in \Sigma_0$, we need to produce a *decider* M_3 such that $L = L(M_3)$.
Theorem 4.22 continued

L(M_1)=L, L(M_2)=L^c, and we want a *decider* M_3 such that L=L(M_3)

Strategy: given an input x, we know that either $x \in L$ or $x \in L^c$. So M_3 does this:

1. M_3: input x
2. set up tape #1 to simulate M_1 on input x
 and tape #2 to simulate M_2 on input x
3. compute one transition step of M_1 on tape 1
 and one transition step of M_2 on tape 2
 - if M_1 accepts, then M_3 accepts
 - if M_2 accepts, then M_3 rejects
 - else goto 3

This is like running both M_1 and M_2 *in parallel*.
Theorem 4.22 conclusion

- For each string x, either M_1 accepts x or M_2 accepts x, but never both
 - So the machine M_3 will always halt eventually in step 3
 - Therefore, M_3 is a decider

- M_3 accepts those strings in L and rejects those strings in L^c
 - So $L(M_3) = L

QED
Getting a non-recognizable language from A_{TM}

- $L \in \Sigma_0 \iff (L \in \Sigma_1 \text{ and } L^c \in \Sigma_1)$
- $L \not\in \Sigma_0 \iff (L \not\in \Sigma_1 \text{ or } L^c \not\in \Sigma_1)$

Now since we know that $A_{TM} \not\in \Sigma_0$, and we know that $A_{TM} \in \Sigma_1$, it must be true that $A_{TM}^c \not\in \Sigma_1$.

- $A_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \in L(M) \}$
- $A_{TM}^c = \{ x \mid x \text{ is not of the form } <M,w> \text{ or } (x = <M,w> \text{ and } w \not\in L(M)) \}$

If we narrow this down to strings of the form $<M,w>$, then the language is still unrecognizable:

- $NA_{TM} = \{ <M,w> \mid M \text{ is a TM and } w \not\in L(M) \}$
Unrecognizability

- $\text{NA}_{\text{TM}} = \{ <M, w> \mid M \text{ is a TM and } w \notin L(M) \}$

- What does it mean that NA_{TM} is unrecognizable?
 - Every TM recognizes a language that’s different than NA_{TM}
 - Either it accepts strings that are not in NA_{TM}, or it fails to accept some strings that actually are in NA_{TM}

- Analogy to C programs:
 - Write a C program that takes another C program as input and prints out “loop” if the other C program goes into an infinite loop.
Each point is a language in this Venn diagram.

\[\Delta_{\text{TM}} \in \Sigma_1 - \Sigma_0 \]

\[\text{NA}_{\text{TM}} \in \text{ALL} - \Sigma_1 \]