Decidability

prepared by John Sieg, UMass Lowell
content largely from Michael Sipser’s Introduction to the Theory of Computation, second edition, Chapter 4

Overview

• Show a problem is decidable by constructing a Turing machine (algorithm) that decides it.
• Show that a problem is undecidable by proving that no Turing machine decides it.

Theorem 4.1: Acceptance Problem for DFAs

\[A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \} \]

Theorem 4.1: \(A_{DFA} \) is a decidable language.

proof: The following TM decides \(A_{DFA} \):
M=“On input \(\langle B, w \rangle \), where \(B \) is a DFA:
1. Simulate \(B \) on input \(w \).
2. If the simulation ends in an accept state, \text{accept}. If it ends in a nonaccepting state, \text{reject}.”

Languages Related to \(A_{DFA} \)

Similarly, the following languages are decidable:

\[A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w \} \]

\[A_{REX} = \{ \langle B, w \rangle \mid B \text{ is a regular expression that generates string } w \} \]
Theorem 4.4

\[E_{\text{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \]

Theorem 4.4: \(E_{\text{DFA}} \) is a decidable language.

proof: The following TM decides \(E_{\text{DFA}} \):

- **1.** Mark the start state of \(A \).
- **2.** Repeat until no new states get marked:
 - **3.** Mark any state with a transition from a marked state.
 - **4.** If no accept state is marked, accept. Otherwise, reject.

Theorem 4.7

\[A_{\text{CFG}} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates string } w \} \]

Theorem 4.7: \(A_{\text{CFG}} \) is a decidable language.

proof: The following TM decides \(A_{\text{CFG}} \):

- **1.** Convert \(G \) to an equivalent Chomsky normal form grammar.
- **2.** List all derivations with \(2n-1 \) steps, where \(n \) is length of \(w \) (except if \(n=0 \) ...).
- **3.** If any of these derivations generate \(w \), accept. Otherwise, reject.

Theorem 4.9: CFLs are Decidable

Theorem 4.9: Every CFL is decidable.

proof: Given a CFL \(A \), let \(G \) be a CFG for \(A \).

- **1.** Run TM \(S \) from Theorem 4.7 on \(\langle G, w \rangle \).
- **2.** If this machine accepts, accept. If it rejects, reject.

Counting

- **Definition 4.12**: Two sets have the same size if there is a one-to-one, onto function (bijection, correspondence) between them.

- **Definition 4.14**: A set is countable if it is finite or has the same size as \(\mathbb{N} \).

- **Example**: \(\{2, 4, 6, \ldots\} \) is countable.
- **Example**: \(\mathbb{Q} \) is countable.
- **Example**: Given alphabet \(\Sigma \), \(\Sigma^* \) is countable.
- **Example**: \(\mathbb{R} \) is uncountable.
Corollary 4.18

Corollary 4.18: Some languages are not Turing-recognizable.

proof: The set B of infinite binary sequences is uncountable.

Let L be the set of languages over alphabet Σ. Each language has a unique sequence called the characteristic sequence.

Ex. $\Sigma = \{a, b\}$ $L = \{a^n b^n \mid n \geq 0\}$

$\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aab, \ldots\}

\chi_L = 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 1\ \ldots$

B uncountable implies L uncountable.

But the number of Turing machines is countable!

The Acceptance (Halting) Problem

Theorem 4.11: The language $A_{TM} = \{\langle M, w \rangle \mid M$ is a TM and M accepts $w\}$ is undecidable.

proof: by contradiction. Assume A_{TM} is decidable.

Suppose H is a decider for A_{TM}.

$H(\langle M, w \rangle) = accept$ if M accepts w

$reject$ if M does not accept w

Construct D as follows:

$D = \langle M, \langle M \rangle \rangle.$

1. Run H on input $\langle M, \langle M \rangle \rangle$.

2. Output the opposite of what H outputs.

The Acceptance Problem, cont.

$D(\langle M \rangle) = accept$ if M does not accept $\langle M \rangle$

$reject$ if M accepts $\langle M \rangle$

Now run D on itself.

$D(\langle D \rangle) = accept$ if D does not accept $\langle D \rangle$

$reject$ if D accepts $\langle D \rangle$

Both possible cases lead to a contradiction.

A Turing Unrecognizable Language

A language is **co-Turing-recognizable** if it is the complement of a Turing-recognizable language.

Theorem 4.22: A language is decidable iff it is Turing-recognizable and co-Turing-recognizable.

Corollary 4.23: A_{TM} is not Turing-recognizable.