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Abstract— Coflow scheduling can improve application-level 

communication performance for data-parallel clusters. 

However, most prior coflow scheduling schemes are based on 

the centralized approach, which achieve good performance but 

suffers from high control overhead and scalability issue. On the 

other hand, state of the art decentralized solution requires 

switch modification, which makes it hard to implement. In this 

paper, we present Stream, the decentralized and readily-

implementable solution for coflow scheduling. The key idea of 

Stream is to opportunistically take advantage of many-to-one 

and many-to-many coflow patterns to coordinate coflows 

without resorting to the centralized controller, and then emulate 

shortest coflow first scheduling to minimize the average coflow 

completion time (CCT). We implement Stream with existing 

commodity switches and show its performance using both 

testbed experiments and large-scale simulations. Our evaluation 

results show that Stream’s performance is comparable to the 

centralized solution, and outperforms the state of the art 

decentralized scheme by 1.77x on average.  

I. INTRODUCTION  

Network traffic in today’s data-parallel clusters is often 

shaped by requirements at the application-level, and coflow 

provides an abstraction that bridges application-level 

semantic and the network [4, 15]. At the network level, coflow 

refers to a set of parallel flows associated with a specific task 

given by the application, and all flows in a coflow must be 

completed for the completion of a communication stage. In 

other words, minimizing coflow completion time (CCT) may 

result in a shorter completion time of the corresponding task 

and improve performance at application-level.  

A number of proposals formulate coflow scheduling into 

CCT minimization problem. Most of the prior schemes are 

based on a centralized approach [4-9], where a single 

controller makes the coflow scheduling decision for the entire 

system. The centralized approach achieves good performance 

but suffer from a high control overhead (e.g., synchronization, 

fault tolerance, scalability, etc.). Alternatively, the state of the 

arts decentralized solution [3] requires customized 

modification in switches and this makes implementation and 

deployment difficult. In this paper we present Stream, a 

decentralized and readily-implementable solution for coflow 

scheduling, which opportunistically takes advantage of many-

to-one and many-to-many coflow communication patterns 

without relying on a central controller.  

Many-to-one is a communication pattern of a single 

receiver communicating with multiple senders to complete a 

single coflow [19-24, 35]. We observe that receiver is a 

natural position for coordinated coflow scheduling, since the 

overall coflow information can be available there. To 

minimize average CCT, Stream emulates conditional Shortest 

Job First (C-SJF) by prioritizing smaller coflows over larger 

ones. Stream assigns a priority to each coflow by considering 

its total number of bytes received at the receiver and other 

conditions such as the number of completed flows of the same 

coflow; the priority is gradually decreased as the total number 

of bytes received increases. Then, SJF is enforced by utilizing 

priority queuing, a built-in function available in today’s 

commodity switches, to ensure smaller coflows are prioritized 

over larger coflows. 

We extend the above scheme to the many-to-many pattern, 

where multiple receivers communicate with multiple senders 

[18, 20, 23] and a coflow consists of multiple sub-coflows. 

Each sub-coflow is many-to-one. For this, Stream also utilizes 

the receiver to schedule coflows. However, in this scenario 

receivers of different sub-coflows may not directly exchange 

information with one another, therefore the receivers of a 

coflow may not have a full picture of the coflow (e.g., the total 

bytes received in a coflow). The lack of shared information 

may lead to poor outcomes.  To resolve this challenge, Stream 

complements C-SJF with three additional schemes. (𝑖) 
Weighted-Priority: the priority decision is weighted such that 

sub-coflows of the same coflow that arrive later will be 

deprioritized faster. (𝑖𝑖) Information-Relay: Stream also takes 

advantage of senders that are serving multiple receivers of the 

same coflow by relaying information (i.e. bytes received) 

between these receivers. (𝑖𝑖𝑖) Child-to-Parent: in multi-stage 

scenario where the completion of a parent sub-coflow is 

dependent on the completion of child sub-coflows of the same 

coflow, the receiver of child sub-coflow, upon its completion, 

will communicate its size (bytes received) to the receiver of 

the parent sub-coflow. This allows the receiver of the parent 

sub-coflows to make better scheduling decision. By this 

design, Stream is effective in prioritizing smaller coflows over 

larger coflows in many-to-many scenarios. 

We have implemented a Stream prototype and deployed it 

in a small-scale testbed. Our implementation verifies that 

Stream can be readily deployed in today’s commodity 

datacenters without requiring modification to switch 

hardware. Our testbed experiment results show up to 1.3× 

faster CCT on average and 1.87× faster with mice coflow 

compared to TCP fair sharing. 

We further evaluate Stream through a large-scale trace-

driven simulation with a production trace of coflow traffic 

from Facebook datacenter [4].  In the many-to-one scenario, 

Stream shows 1.4× and 1.77× faster CCT on average 

compared to the state of the art decentralized solution [3] and 



 

 

per-flow fair sharing scheme respectively (and 2.7× and 5.1× 

faster respectively with mice coflows). At the same time, 

Stream achieves comparable outcomes to the centralized 

scheduler, Aalo [5]. For further evaluation, we include two 

other case studies: multi-wave coflow (flows of the same 

coflow arriving at different times) and bursty traffic (coflows 

arriving within the same interval). Stream improves the 

average CCT by up to 2.8× in the multi-wave study and at 

least 1.9× faster in bursty traffic study compared to the 

decentralized and per-flow fair sharing schemes. In many-to-

many scenario, the evaluation is performed by utilizing two 

benchmarks: TPC-DS [5] query and Facebook Tao structure 

[28]. Stream outperforms both Baraat and per-flow fair 

sharing by up to 1.85× faster on average. Compared to 

centralized scheme, Stream achieves comparable performance 

in both case studies.  

This paper is organized as follows. We begin by 

presenting background information in section II. Stream is 

described in detail in section III. Simulation results are 

presented in section IV, followed by previous related work in 

section V and concluding remarks in section VI.  

II. BACKGROUND  

This section provides a general overview of coflow 

structure, a description of coflows in production, and network 

model. 

 

Fig. 1. CDF plot:  a) coflow size , b) length, and c) width from Facebook 

datacenter [4], and d) coflow size in Bing, Microsoft datacenter [3].   

 
Fig. 2. Network topologies: Big-Switch topology [4,5] (left), FatTree 

topology [30] (middle), and a simple network topology (right). 

Coflow structure. Cluster computing applications today 

generally follow many-to-one model. For example, mapper 

and reducers in Map-Reduce [18] are respectively the 

receiver and senders in a coflow. Spark [20] is another 

framework that utilizes many-to-one pattern for enabling data 

reuse in applications. Others include Dryad [19], DryadLINQ 

[21], SCOPE [22], Pregel [23], GraphLab [24], Tachyon [35], 

etc. To confirm this finding, we have analyzed production 

trace of coflow traffic from Facebook datacenter [4] and we 

observe that many-to-one pattern is also found in the 

production trace. Since this pattern is common among 

applications, we design our proposed coflow scheduling 

scheme to take advantage of the receiver in many-to-one 

model to coordinate the flow transmission of coflow without 

resorting on a central controller. 

Coflows in production. The authors of [4] discover that 

coflow size follows the heavy trailed distribution. Only 8% 

(15%) of coflows has the size of at least 10 GB (1 GB) in 

Facebook datacenter, yet they are responsible for 98% 

(99.6%) of the traffic. In other words, the majority of coflows 

are relatively small coflow size (Figure 2a, 2b, and 2c). 

Findings of authors of [3] from Bing search application in 

Microsoft’s datacenter (Figure 4d), and a further investigation 

in [6] also concur that coflow size follows the heavy tailed 

distribution. A similar trend is also observed in [14] where the 

data-mining distribution has a very heavy tail with 95% of all 

data bytes belonging to 3.6% of flows larger than 35MB. This 

means the system is predominantly populated by shorter 

flows, but the traffic is mostly taken up by minority flows.  

Network model. The two popular network topologies 

(Figure 2) often used in scheduling scheme design for 

datacenter are: (𝑖) Big-Switch-based topology [4,5,10,13], a 

non-blocking datacenter fabric where processing and queue 

delay are negligible. This model only focuses on bottleneck 

in ingress and egress ports (machine NICs) which allows 

simpler computation. (𝑖𝑖) Tree-based topology [2, 3, 7, 8, 10, 

25] like FatTree [30]. To choose between these two 

topologies, we conduct few experiments in our testbed and 

NS-3 simulator with network topology illustrated in Figure 2 

(right). We discover that processing and queuing delay in 

switches in non-edge network does matter. Our finding 

confirms the results of [2, 10, 11 25]. The bottleneck shifts 

from edge and becomes more distributed because today’s 

NIC speed catches up to switches processing speed [31]. For 

this reason, we adopt the tree based topology and incorporate 

it into our design.  

III. STREAM DESIGN 

Stream is a decentralized solution that opportunistically 

takes advantage of many-to-one and many-to-many patterns 

to coordinate coflows. In the design, we consider the 

following coflow characteristics: the number of parallel 

flows (width), total bytes (size), and the longest flow in bytes 

(length). These characteristics determine the state of a 

coflow, for example, the number of flows in a coflow that 

have been completed, the amount of bytes received per 

coflow, etc. As prior works [3-9, 37], Stream assumes that 

information on coflow ID can be derived from upper layer 

applications.   

A. Problem Formulation 

Consider the following offline scheduling problem with  𝑛 

coflows in a system indexed by 𝑐 = 1, 2, …, 𝑛. Then, the 

objective of scheduling problem is as follows.   

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡𝑐
𝑛

𝑐=1
 ,                                  (1)   

∑ 𝑥𝑓≤ℬ𝑙
𝑓∈𝑙

,   ∀𝑙∈𝐿,                                  (1.𝑎) 

𝑤𝑓≤𝒯𝑤 ,   ∀𝑓∈𝑐,                               (1.𝑏) 

𝑝𝑖<𝑝𝑖+1,   ∀𝑝𝑖,𝑝𝑖+1∈𝑓,                         (1.𝑐) 

𝑂𝑣𝑒𝑟 𝑡𝑐,𝑤𝑓≥0. Notation 𝑡𝑐 denotes the completion time of 

coflow 𝑐 and it is described as the following expression: 𝑡𝑐=

a) b) c) 
d) 



 

 

max(𝑡𝑓|  ∀𝑓∈𝑐), where 𝑡𝑓 denotes the completion time of 

flow 𝑓. In other words, 𝑡𝑐 is determined by the completion 

time of the longest flow’s completion time in a coflow. 

Constraint (1.a) assures aggregate flow traversing link 𝑙 does 

not exceed link capacity ℬ𝑙. Constraints (1.b) and (1.c) assure 

starvation and packet out-of-order respectively are mitigated.  

It is also important to note CCTs minimization is an NP-Hard 

problem [3, 4] and reducible to Open Shop Problems [12].  

B. Many-to-one Pattern 

We begin by addressing coflow scheduling problem in 

many-to-one scenario on the premise that coflow size is 

unknown a priori.  

 
Figure 3. Stream overview in many-to-one scenario.      

Generally, Stream utilizes C-SJF to minimize the average 

CCT by prioritizing smaller coflows over larger ones. Figure 

3 summarizes Stream’s C-SJF: the receiver determines the 

priority of a coflow and communicates it to each sender. 

Next, the senders transmit data with the priority determined 

by the receiver. The priority is then enforced at switches by 

utilizing strict priority queuing, a built-in function available 

in today’s commodity switches.  

C-SJF is accomplished by first comparing the coflow size 

to a demotion threshold 𝒯 at the receiver’s end: if the coflow 

size exceeds 𝒯, then the coflow will be deprioritized, which 

results in deprioritization to all its flows. However, since 

coflow size is unknown a priori, a straightforward 

measurement may not be possible. To address this issue, our 

solution is inspired by [5, 25]. Initially every coflow is 

assigned to the highest priority and the priority is later 

adjusted as the information on the amount of bytes received 

becomes available at the receiver. Then, the receiver notifies 

its senders with new priority updates by embedding the 

updates in the ACK packet. Secondly, the scheme takes 

coflow condition into consideration in deciding the priority 

(e.g. number of completed flows). Thirdly, to ensure 

compatibility with the existing commodity switches, Stream 

performs the scheduling at the receiver’s end because 

information on coflow and its flows are accessible there. 
Lastly, SJF is enforced by utilizing multiple queues, which is 

commonly available in the existing commodity switches, to 

implement strict priority queuing (SPQ).  

Although it has been pointed out in [5] that SPQ may 

introduce the risk of starvation and Weighted Fair Queuing 

(WFQ) may provide a better solution, SPQ is preferable for 

two reasons: first of all, priority queuing provides better in-

network prioritization and potentially achieves lower CCT. 

Secondly, WFQ may cause TCP packet out of order problem. 

We will address the starvation concern later in this paper.    

 
Fig 4. (a) Coflow dependency in Claudera’ TPC-DS [4], and (b) Facebook’s 

Tao Architecture [28,32], where each layer represents the webserver, cache 

follower, cache leader, and database. (c) Coflow sub-ID of TPC-DS and (d) 

Tao Architecture generated in Weighted-Priority Approach. 

Coflow priority decision. Here, we present Stream’s priority 

decision mechanism. Consider 𝐾 priority queues in the 

commodity switches [1] and given coflow 𝑐, priority 𝑃𝑓
𝑘 

denotes  𝑘𝑡ℎ priority queue assigned to flow 𝑓∈𝑐, such that 

1≤𝑘≤𝐾. Then, the priority arrangement is defined as 

follows: 𝑃𝑓
1>𝑃𝑓

2>⋯>𝑃𝑓
𝑘>⋯>𝑃𝑓

𝐾, where 𝑃𝑓
1 is the 

highest priority and 𝑃𝑓
𝐾 is the lowest priority. Every 𝑃𝑓

𝑘 is 

associated to threshold 𝜏𝑘. Currently, existing commodity 

switch typically supports 8 priority queues [1]. Let 𝑃𝑓 denote 

the priority assigned to 𝑓, such that 𝑃𝑓=𝑃𝑓
𝑘.  Initially, all 𝑓 is 

assigned to 𝑃𝑓
1, such that ∀𝑓∈𝑐,𝑃𝑓=𝑃𝑓

1. Therefore, given 

flow size 𝑥𝑓≥0, the priority 𝑃𝑓 is decided as follows. 

𝑃𝑓=𝐾−⌈𝐾.min(1,
𝜏𝑘+𝛼 ℋ𝑐
∑  𝑥𝑓𝑓∈𝑐

)⌉,     for ∃𝑥𝑓>0,        (2) 

ℋ𝑐=𝜏𝑘(
  𝑛𝑐
𝑓𝑛𝑠ℎ

 

𝑛𝑐 
+

𝑛𝑐

∑  𝑥𝑓𝑓∈𝑐
) ,                        (3)  

where 𝑛𝑐
𝑓𝑛𝑠ℎ

 and 𝑛𝑐 in (3) denote the number of flows in 

coflow 𝑐 that have completed and the total number of flows 

in 𝑐. The ratio 
𝜏𝑘

∑  𝑥𝑓𝑓∈𝑐
 in (2) enforces SJF emulation. Observe 

that 𝑃𝑓 decreases as ∑  𝑥𝑓𝑓∈𝑐  grows, which results in   
𝜏𝑘

∑  𝑥𝑓𝑓∈𝑐
<

1. This equality implies that coflow with ∑  𝑥𝑓𝑓∈𝑐 >𝜏𝑘, for 

𝑘>1, will be deprioritized. The ceiling function in (2) 

assures that 𝑃𝑓 is an integer. The rationale behind the ratio 

𝑛𝑐
𝑓𝑛𝑠ℎ

 

𝑛𝑐 
 in (3) is to prioritize coflow that is suspected to be near 

completion. Ratio 
𝑛𝑐

∑  𝑥𝑓𝑓∈𝑐
  is also utilized to influence smaller 

coflows to be given higher priority. Since information may 

not be a priori known in every framework, 𝑛𝑐 is adjusted as 

new information becomes available. To summarize the 

discussion, ℋ𝑐 can be interpreted as a function that captures 

coflow conditions. This function can be further developed as 

part of our future work. At last, to assure packet arriving out 

of order is avoided, 𝑃𝑓=𝑚𝑎𝑥(𝑃𝑓,𝑃𝑓
′),  where 𝑃𝑓

′ is the previous 

decided priority.  

C. Many-to-many Pattern 

A coflow with many-to-many pattern may consist of 

multiple sub-coflows and there may exist dependency 

between sub-coflows. As illustrated in Figure 4, coflow with 

this pattern can be modelled with Directed Acyclic Graph 

a) 

b) 

c) 

d) 



 

 

(DAG). Similar observations are made in [5], that first sub-

coflows of a same coflows must be treated as a single entity. 

Second, a parent sub-coflow only completes when the child 

sub-coflows it depends on are completed. Some of the 

challenges with this pattern in decentralized environment 

include keeping track of the relationship among sub-coflows 

from the same entity, deciding an appropriate priority when 

coflow information is sparse, and sub-coflows within the 

same entity may not be aware of the existence of other sub-

coflows. To address these challenges, Stream utilizes 

Weighted-Priority, Information-Relay, and Child-to-Parent 

approaches. With these approaches, Stream opportunistically 

gathers information on bytes received. Then Stream utilizes 

C-SJF to coordinate coflow where each receiver of the same 

coflow manages its own sub-coflow.  

Algorithm 1: Sub Coflow ID Assignment 

1. InternalID[ ] // set of IDs proposed by parent 

2. |Parents|       // number of parents 

3. Procedure  Set_SubCoflowID (InternalID[ ] ) 

4.         If   𝐷=𝐷′ ,∀𝐷,𝐷′∈InternalID[ ],  then 

5.                SubCoFlowID = InternalID[ ] + |Parents| – 1. 

6.         Else  SubCoFlowID = 𝑚𝑎𝑥(InternalID[ ]) 

7. End procedure 

Weighted-Priority (WP). Here, we propose a scheme to 

weigh the priority decision such that sub-coflows of the same 

coflow that arrive later will be deprioritized faster. Stream 

utilizes coflow’s internal ID that is used to identify its sub-

coflows to weigh coflow priority. Internal ID determined 

using algorithm 1 can be utilized as an indicator of the 

number of sub-coflows that is locally discovered by a sub-

coflow. For example, if the internal ID=4, it means there are 

at least 3 others sub-coflows in the entity. It can also be 

utilized to describe dependency between sub-coflows. For 

example, parents sub-coflow has a lower ID number than its 

children. Stream extends eq. (2) of C-SJF scheme and 

leverages internal IDs to weight the priority of each sub-

coflow by the following equations.  

𝑃𝑓=𝐾−⌈𝐾.min(1 ,
𝜏𝑘+𝛼 ℋ𝑐
𝑊 ∑  𝑥𝑓𝑓∈𝑐

)⌉                  (4) 

Here, weight 𝑊=𝛼.𝑙𝑜𝑔(𝑚+1) when 𝑚>1. Otherwise, 

𝑊=1. The log function is to limit 𝑊’s influence on priority 

decision. Variable 𝑚 denotes number of sub-coflows that is 

discovered so far. Weight 𝑊 in eq. (4) is employed to allow 

a faster deprioritization of sub-coflows that are members of a 

large coflow. The internal ID is generated by parent sub-

coflows when they are invoking new sub-coflows (children) 

using algorithm 1. The ID of the first batch of sub-coflows in 

an entity is provided by “master” (or “manager”) whose task 

is to invoke the first batch of sub-coflows [18, 20, 21, 23, 24]. 

When there are two or more parents assign different ID to the 

same child, the largest ID is selected by the child. If there are 

two or more parents assign a child with the same ID, then 

child’s ID = ID + n_parents-1, where n_parent denotes the 

number of child’s parents. For example, sub-coflow 𝐶8,4 in 

Figure 4c and 4d 

Information-Relay (IR). In applications like Map-Reduce 

[18], multiple receivers of the same coflow may share 

common senders. In other words, a sender may serve multiple 

receivers of the same entity at the same time. Stream takes 

advantage of these senders to relay information (i.e. bytes 

received) between receivers of the same coflow. The sender 

first observes coflow ID and sub-coflow (internal) ID, for 

example, the coflow ID of coflow 𝐶8.1 (in Figure 3.a) is 𝐶8 
and the internal ID is 1. Then, by comparing the coflow ID, 

the sender knows that it is serving multiple receivers of the 

same coflow. On this basis Stream leverages senders to relay 

information (such as bytes received) between receivers by 

piggybacking in data sent to its receivers. Then, the receiver 

sums up the information on bytes received gathered from its 

peers to determine the priority. Let 𝑆 denotes the total amount 

of bytes received by receiver’s peers and 𝛽 denotes a weight 

factor, the priority is determined by extending eq. (4), which 

is described as in the following equation, eq. (5). 

𝑃𝑓=𝐾−⌈𝐾.min(1 ,
𝜏𝑘+𝛼 ℋ𝑐

𝑊 (𝛽 𝑆+∑  𝑥𝑓𝑓∈𝑐 )
)⌉                  (5) 

Child-to-Parent (CP). We observe that the receiver of 

parent sub-coflow is a natural position for gathering 

information (bytes received) of its child sub-coflows because 

it has access to the receivers of child sub-coflows. CP is 

carried out in two stages. In the first stage, when a child sub-

coflow completes, the receiver of the child sub-coflow sends 

a tuple, <Responses to query, sub-coflow size (bytes 

received)>, to the receiver of the parent sub-coflow. In the 

second stage, upon receiving a tuple, the parent sub-coflow 

sums up the sub-coflow size of its child sub-coflows and 

determine the priority utilizing eq. (5). This approach enables 

Stream to capture large coflows that are made up of many 

mice sub-coflows.  

In addition, we also observe that threshold-based 

approaches [5, 27] process large coflows and mice coflows 

together until one of them exceeds the threshold for mice 

coflow. Most likely that a mice coflow is made up of a few 

mice sub-coflows. Thus, to detect large coflows earlier, the 

threshold for highest priority is configured to detect mice sub-

coflows and, the larger coflows will be detected by parent 

coflows using the approach described in the previous 

paragraph.  

By combining WP, IR, and BU with C-SJF, Stream 

obtains the approximation of the number of sub-coflows, as 

well as of the current coflow sizes. This allows Stream to 

quickly direct coflows to the right queues and allocate 

appropriate resources.  

D. Practical Consideration 

Multi-wave. Flows from the same coflow may arrive at 

different times due to failures or stragglers [33]. Stream is 

capable of handling events with multiple waves of arrival 

flows as long as the flows use the appropriate coflow and sub-

coflow ID. The receiver keeps track of the amount of data 

received regardless of the number of waves.   



 

 

Starvation mitigation. To resolve starvation issue, when the 

waiting exceeds pre-defined threshold, the sender of the 

starving flow retransmits packets that have not been 

acknowledged with higher priority assignment. The duplicate 

packets will be dropped at the receiver by TCP [29] if there 

is any. The process is repeated until the flow escapes the 

starvation. Then, upon receiving a packet from the starving 

flow, the receiver compares the priority of the recent received 

packet with the priority currently assigned to the starving 

flow. If they do not match, then the receiver increases that 

coflow priority and notifies the sender of the starving flow 

with new priority through the ACK packet.  

Setting threshold. Although threshold is commonly used in 

system design [3,4,10,25,27], there is very little study on how 

threshold should be decided, such that system achieves 

optimality. Authors of [25] attempt to formulate threshold 

setting into convex optimization problem, but it uses too 

many constraints in the formulation, which may not be 

realistic. We attempt to compute the threshold for each 

priority queue by utilizing eq. (6) from queuing theory [26]. 

We observe that doing this does not guarantee convexity, and 

therefore it is possible that this is a non-convex problem (an 

NP-Hard problem). At this point, the thresholds are decided 

using exponentially-spaced threshold used in [5]. We will 

further investigate the setting of threshold in our future work.   

Number of queues required. Next, we address the question 

of the number of queues required to ensure that our proposed 

method will achieve a good performance.   

Theorem 1. The performance improvement has diminishing 

returns behavior as 𝑘→∞. 

Proof. Let 𝐾=∞ denote the number of priority queues and 

𝜇 be the processing rate of a link. The waiting time 𝑤𝑘 at 

queue with priority 𝑘 𝜖 𝐾 is described by equation from [26]. 

𝑤𝑘=
1

𝜇
  

 1

𝑓∏ (1−∑  𝜌𝑖
𝑗
𝑖=1 )𝑘

𝑗=1

 ,                             (6) 

where 𝜌𝑘 denotes the traffic load 𝑘𝑡ℎ priority queue. Then, 

we have 𝜌𝑘=
𝜆𝑘

𝜇
 [26], where 𝜆𝑘 denotes the arrival rate at 𝑘𝑡ℎ 

priority queue. Observe that, given priority 𝑃𝑓
1>𝑃𝑓

2>⋯>

𝑃𝑓
𝐾, we have  𝑤1≤𝑤2≤⋯≤𝑤𝐾. Let 𝑈(𝑤𝑘) be the utility 

function of 𝑤𝑘 to evaluate the performance of the system. The 

performance evaluation can be formulized as follows. 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒∑ 𝑈(𝑤𝑘)
𝐾
𝑘=0 , where 𝑈(𝑤𝑘)=

1

𝑤𝑘
. ∑ 𝑈(𝑤𝑘)
𝐾
𝑘=0  can also be 

expressed as ∑ 𝑈(𝑤𝑘)
𝐾
𝑘=0 =

1

𝑤1
+
1

𝑤2
+
1

𝑤3
+⋯.+

1

𝑤𝐾
. Notice 

lim
𝑘→∞
𝑈(𝑤𝑘)=0 , which also implies that the utility of 𝑈(𝑤𝑘) 

diminishes as 𝑘→∞. Thus, the performance improvement 

follows the behavior of diminishing returns. ∎   

Theorem 1 implies that at some point the benefits of multiple 

queues diminish as the number of queues increases, which is 

consistent with findings in [5, 25] and confirmed by our 

testbed and simulation results. We utilize 4 queues in our 

experiments and achieve satisfactory outcomes. 

Discussion. We acknowledge that the coflow patterns in 

datacenter may not always follow many-to-one or many-to-

many, and further, it is not impossible that a coflow may 

consist of individual flows. In these scenarios, Stream 

behaves similar to existing scheduler like PIAS [25]. 

IV. EVALUATION 

The performance of Stream is evaluated through 

experiments in our testbed with 1G port switches and large-

scale simulation using Facebook data trace from [4,5]. Our 

primary metric for comparison is the average CCT, and our 

performance improvement factor is described as follows.  

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡= 
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐶𝐶𝑇𝑠

𝑆𝑡𝑟𝑒𝑎𝑚′𝑠 𝐶𝐶𝑇𝑠
. 

If the improvement is greater (smaller) than one, Stream is 

faster (slower).   

The main results are summarized as follows: 

1. In testbed experiment, relative to TCP fair sharing, Stream 

improves the average CCT by up to 1.3× faster and the 

average mice coflow CCT by up to 1.87× faster. 

2. Large-scale simulation shows that on average, Stream 

outperforms state of the art decentralized solution (Baraat) 

and per-flow fair sharing by up to 1.4× and 1.71× faster 

respectively, and only trailing by 0.87× compared to the 

centralized solution, Aalo. For mice coflows, Stream is 

2.7× and 5.1× better in comparison to Baraat and per-flow 

fair sharing respectively, while achieving comparable 

outcomes to Aalo.  

3. In multi-wave scenario, Stream outperforms Baraat and 

per-flow fair sharing by up to 1.7×  and 2.8× faster. 

Compared to Aalo, Stream achieves similar performance. 

4. In many-to-many, on average Stream improves the 

performance by up to 1.85× and 1.9× faster than Baraat 

abd per-flow fair sharing respectively, while achieving 

comparable performance to Aalo.     

 
Fig. 5. Testbed Experiments with TCP and Stream of avg. CCT, avg. mice 

coflows CCT, and 95th percentile avg. CCT. (a) Scenario one: 117 coflows 

with 2160 flows. (b) Scenario two: 105 coflows with 1140 flows. 

A. Testbed Experiment  

Implementation: We build Stream prototype based on 

modifying the TCP kernel module in Linux operating system. 

Then, we implement client/server application to emulate 

senders and receivers in many-to-one scenario by utilizing 

socket programming. Here, client applications are the senders 

and server applications are the receivers. We assume coflow 

ID is provided by application layer in this implementation. 

Hence, Senders utilize setsockopt to pass down coflow ID 

from the application layer to the transport layer. This allows 

the application layer to insert coflow ID into IP option field 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Avg. Mice 95th

Im
p

ro
ve

m
e

n
t 

117 Coflows (2160 Flows)

a)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Avg. Mice 95th

Im
p

ro
ve

m
e

n
t 

105 Coflows (1440 Flows)

b)



 

 

in TCP packet header. The ID is utilized to identify which 

packet belongs to which coflow. At the receiver’s end, coflow 

ID is extracted from packet received from its senders. 

To communicate priority decision, the receiver utilizes the 

reserve field in the TCP header of ACK to map the priority 

(e.g. priority 2) to Differentiated Services Code Point (DSCP) 

[29] bits of ACK packets that are sent to its senders. The 4 

bits in Reserve field provides a range of integer 0 to 15, which 

is sufficient to represent 8 priority queues.  

These coflow monitoring and priority notification 

schemes are accomplished by adding a few lines in TCP 

kernel in Linux. At last, threshold information can be stored 

in a file to allow thresholds to be adjusted without re-

compilation.  

To meet the required constraints described in problem 

formulation (1), capacity constraint in (1.a) can be addressed 

by utilizing Explicit Congestion Notification (ECN) [29] 

based protocol (DCTCP [11]), starvation constraint in (1.b) 

can be elevated by senders quickly performing the starvation 

mitigation when the timer expires at 10ms, which is TCP 

RTOmin [11]. To satisfy packet out of order constraint (1.c), 

Stream only deprioritizes coflows only if it is required.  

Testbed: 8 servers connected to a Pica8 P-3297 48-port 1 

Gigabit Ethernet, 4-port 1 Gigabit Ethernet commodity 

switch with 2MB shared memory, which supports strict 

priority queuing with at most 8 classes of services queue [1]. 

Each server is a Dell Server: PowerEdge R320 with CPU 

Intel(R) Xeon(R) CPU E5-1410 0 @ 2.80GHz, 8G memory, 

and Broadcom 5720 Dual Port 1Gb LOM Gigabit Ethernet 

NIC. Each server runs Ubuntu 14.04.2 LTS with Linux 4.0 

kernel.  In our switch, we enforce strict priority queuing and 

classify packet based on the DSCP field.  

Experiment: To evaluate Stream, we create two experiment 

scenarios in which 6 machines are running senders and a 

machine running receivers. In the first scenario, the 

experiment is conducted with 2160 TCP flows that make up 

117 coflows. In the second scenario, there are 1440 TCP 

flows which make up 105 coflows. In both scenarios, we 

added the 8th server to generate background traffic of 500 

Megabits per second (50% of the link capacity) using iperf, 

which is a common traffic characteristic in datacenter [16]. 

We compare the average CCT of Stream to the average CCT 

of TCP fair sharing. This set of experiments is conducted 

using 8 priority queues. Our heavy tailed traffic pattern is 

randomly generated according to traffic patterns from 

Facebook and Bing search (Microsoft) [4, 3], and is 

illustrated in Figure 1.  

Experiment results. Our testbed experiment demonstrates 

that when compared to TCP fair sharing, Stream achieves 

better performance by 1.3× and 1.27× on average in the first 

and second scenario respectively, as illustrated in Figure 5. 

Also, as depicted in the same figure, in both scenarios Stream 

reduces the average CCT of mice coflows by up to 1.7× and 

1.87× respectively. Moreover, Stream also has better 

performance by up 1.58× and 1.72× at 95th percentile in 

comparison to scheduler with regular per-flow sharing in 

both scenarios. Through these instances, we demonstrate that 

Stream performs better than TCP fair sharing, especially in 

network with higher traffic load.  

 

 

Table 1 (left) and table 2 (right). Table 1 describes network size of FatTree 

topology. Table 2 describes flow distribution in multi-wave coflow. 

 I II III IV V 
Size A 1MB-100MB 100MB-1GB 1GB-10GB 10GB-100GB >100GB 

Size B 6MB-1GB 1GB-10GB 10GB-100GB 100GB-1TB >1TB 

Table 3. Five categories of coflow with different size in many-to-one pattern 
(size A) and many-to-many pattern (size B). 

 

  
Fig. 6. Single wave in network in 1G switches (Figure a and b) and network 
in 10G switches (Figure c and d). 

 

 
Fig 7. Average CCT improvement in 8 pods 1G and 10G networks according 

coflow categories described in table 3. 

B. Large-scale Simulations 

In this section, we evaluate Stream’s performance in 

many-to-one and many-to-many scenarios. In many-to-one 

scenario, we consider trace-driven, bursty, and multi-wave 

traffic. In many-to-many, we utilize benchmarks from 

Cloudera [5] and Facebook [28,32]. In all our simulations, we 

use a production traffic trace collected from Facebook 

datacenter, specifically from 150-racks (3000 machines) [5].   

0

0.2

0.4

K8 K16 K24 K32 K48

C
TT

  (
m

s)

network Size

Avg Mice CCT

Baraat
Fair Sharing
Stream
Aalo

a)

0

10

20

30

40

50

60

70

K8 K16 K24 K32 K48

C
C

T 
(m

s)

Network Size

Avg CCT

Baraat
Fair Sharing
Stream
Aalo

b)

0

0.005

0.01

0.015

K8 K16 K24 K32 K48

C
C

T 
 (

m
s)

Network Size

Avg Mice CCT

Baraat
Fair Sharing
Stream
Aalo

c)

0

10

20

30

40

50

60

70

K8 K16 K24 K32 K48

C
C

T 
(m

s)

Network Size

Avg CCT

Baraat
Fair Sharing
Stream
Aalo

d)

0

1

2

3

4

5

I II III IV V Avg

Im
p

ro
ve

m
e

n
t

Coflow Size Catergory

Avg CCT in 8 Pods Network (1G)
Baraat
Fair Sharing
Aalo

a)

0

0.5

1

1.5

2

I II III IV V AvG

im
p

ro
ve

m
e

n
t

Coflow Size Category

Avg CCT in 8 Pods Networks (10G)
Baraat Fair Sharing Aalo

b)

K Pods # of 

Servers 

# of 

Switches 
   

k=8 128 80 

k=16 1024 320 

k=24 3456 720 

k=32 8192 1280 

k=48 27648 2880 

Waves 1th 2nd 3th 4th 

   

 

  

Single  100%    
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Simulation setting: We develop a flow-level simulator and 

it accounts for the flow arrival and departure events, rather 

than packet sending and receiving events. It updates the rate 

and the remaining volume of each flow when event occurs. 

We employ FatTree network topology [30] with up to 27,648 

hosts (48 pods). We conduct our simulation with 1 Gigabit 

(1G) switches to create a higher traffic load condition, as well 

as 10 Gigabit (10G) switches where delay in non-network 

edges is minimal.  Our assumptions are: the switch has 

sufficient buffer to store incoming data, each flow traverses 

along one path, and coflow size follows heavy-tailed 

distribution. 

In our simulations, we compare Stream to per-flow fair 

sharing, Baraat [3], and Aalo [5]. Per-Flow Fair-Sharing (FS) 

is a scheme that shares the capacity equally among flows 

traversing the same link. Baraat, a FIFO with limited 

multiplexing (FIFO-LM) scheduler, is the state of the art 

decentralized scheduler. To analyze how Stream performs 

against centralized solution, we compare our solution to 

Aalo. For simplicity, Aalo’s additional delay from managing 

centralized system is not considered in the simulator and 

information on coflow is made available instantaneously to 

centralized controller. Additionally, based on findings in [5] 

and results from our testbed experiment, 4 priority queues 

provides the best outcome. Thus, Aalo and Stream employ 4 

priority queues in their scheduling schemes. Moreover, in 

principle, all schemes assume that coflow characteristics are 

unknown ahead of time.  

Traffic load. Stream is evaluated using traffic load by 

replaying production traces from Facebook clusters [4, 5]. 

Bursty traffic pattern of coflows arriving at the same interval, 

which is also common in datacenter [17, 32], is considered in 

our study. We also incorporate the commonly used Equal-

cost multi-path routing (ECMP) [29] to route and load 

balance flows in the flow simulator.  Additionally, since TCP 

is the common transport protocol in datacenter, we 

implement rate limiter that behaves like TCP for all schemes, 

except for Baraat where the rate limiter is implemented 

according to its design in [3].  

Many-to-one pattern. Here we provide an overview of 

Stream’s performances in different network sizes in 1G and 

10G networks.  We then analyze how Stream performs under 

heavier load. To evaluate Stream with different traffic loads 

while preserving the authenticity of the original trace, we 

increase the network size according as described in table 1. 

In 1G network, on average, Stream achieves faster 

completion time than Baraat and FS, by up to 1.4× and 1.77× 

respectively (Figure 5b), but trailing by 0.87× compared to 

Aalo (within 13%). Stream achieves up to 2.7× and 5.1× 

faster for mice coflows compared to Baraat and FS 

respectively (Figure 6a). Compared to Aalo (centralized), 

Stream is trailing by 0.76× (within 24%).  

In 10G networks, Stream on average achieves shorter 

completion time than Baraat and FS by up to 1.5× and 2.1× 

respectively, but trails 0.83× compares to Aalo (Figure 6d). 

For mice coflows, Stream outperforms Baraat and FS by up 

to 1.8× and 1.9× faster respectively; and within 13% of Aalo 

(Figure 6c).  

 
Fig. 8. The improvement with 2, 3, and 4 waves coflow in 8 pods 1G 
network. The evaluation is categorized into 5 groups described in table 3A. 

Further, we break down Stream’s performance according 

to different categories described in table 3 using 8 pods 

network with 1G and 10G switches. As illustrated in Figure 

7, Stream outperforms Baraat and FS across all categories in 

both 1G and 10G networks. Stream’s lower average CCT 

compared to FS results from the higher resource dedicated to 

higher priority coflow. Especially for smaller coflows, 

Stream outperforms FS by up to 5× faster, as depicted in 

Figure 7a. Also, Stream outperforms Baraat by up to 3× 

better in group I and II (Figure 7a).  Baraat’s performance 

suffers from lower priority mice coflows queuing behind 

higher priority larger coflows. Stream avoids this problem by 

allowing smaller coflows to jump ahead of the queue by 

deprioritizing larger coflows. On average, Stream performs 

comparably well to Aalo. Stream slightly trails behind Aalo 

for smaller coflows, an expected outcome for centralized 

system with complete information. This explanation does not 

address why Stream converges quicker than Baraat when the 

traffic load decreases (Figure 7). This question will be 

addressed later in this paper.  

Notice in figure 5 that as network size scales up (k-pod is 

increased from 8 to 48), the average CCT improvement 

converges because there are more resources available and the 

traffic becomes more distributed from load balancing with 

ECMP. 

Multi-wave scheduling. We modify the original trace by 

varying the maximum number of concurrent senders in each 

wave according to configuration provided by [4] as described 

in table 3. In Figure 8, we demonstrate the importance of 

coflow states across waves in 8 pods network. Stream 

outperforms FS across waves by 1.7×  and up to 2.8× with 

smaller coflows. Stream outperforms Baraat up to 1.9× and 

shares similar performance with Aalo across waves and 

categories. Stream’s ability to approximate the states of a 

coflow as a whole give it an advantage over FS. Stream 

allows mice coflows to jump ahead of large coflows even 

when they arrive later, while in Baraat mice coflow that come 

later may end up queuing behind higher priority large 

coflows.  

Bursty traffic. We consider another scenario in datacenter 

[17,32] where coflows arrive at the same time. The 

simulation is performed in 8 pods 1G and 10G networks. The 

original trace is modified such that all coflows arrive within 

the same interval. Since Aalo and Baraat use FIFO in their 
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schemes, we keep the same coflow ID and FIFO setting as 

previous experiments. In 1G network, Stream outperforms 

Baraat and FS by at least 1.9× faster on average (Figure 9a). 

Notice that for coflow group II, Stream performs up to 4× 

better than both Baraat and FS. Stream again achieves similar 

outcomes with Aalo across the groups in this scenario. In 10G 

network, Stream outperforms both Baraat and FS by 1.6× and 

1.7× (Figure 9b) respectively, while Stream is within 7% of 

Aalo across the groups.  

 

 

Fig. 9. Improvement average CCT in bursty traffic in 1G and 10G networks. 

  
Fig. 10. The CCT of the first 100 completed coflows with Baraat and Stream 
in 1G and 10G networks.  

In the following discussion we demonstrate why Stream 

outperforms Baraat. Notice that in Figure 10, CCTs of the 

first 100 coflows from Stream is flat, because they are 

processed almost simultaneously and they complete at almost 

the same time. In contrast, Baraat’s CCTs of the first 100 

coflows rise linearly. This is because in FIFO, coflow that is 

queued in the back must wait until all coflows ahead of it are 

processed. Thus when coflows all arrive within the same 

interval, those with lower priority end up with a longer wait 

in the queue. The waiting time is even longer when there are 

more high priority large coflows in the queue, because more 

network resource are allocated to large coflows. As shown in 

Figure 10, the higher the number of mice coflows, the longer 

is the waiting time for mice coflows in the back of the queue. 

We refer this phenomenon as LM-Effect which occurs 

when there is more capacity allocated for limited 

multiplexing (LM) than FIFO. Furthermore, LM-Effect is 

propagated as flows traverse more queues, increasing the gap 

between Stream and Baraat. With this insight, the intersecting 

lines in Figure 10 can be interpreted as the limit of Baraat’s 

improvement over Stream. Stream performs better than 

Baraat when there is a higher number of mice coflows, 

especially in datacenter where the majority (at least 90%) of 

the population is mice coflows.  

 
Fig. 11. Coflow scheduling with different number priority queues through 
testbed and simulation experiments. 

  

 
Fig. 12. Performance Improvement of Coflow with Many-to-many pattern 
using TPC-DS query-42 benchmark in 8 pods 1G and 10G networks. 

  

  

Fig. 13. Performance Improvement of Coflow with Many-to-many pattern 
using Facebook-Tao structure benchmark in 8 pods (a) 1G and (b) 10G 

networks. 

Impact of number of queues: We conduct two experiments 

with 2 to 7 priority queues in our testbed using similar setup 

as in our previous testbed experiment with 30 coflows, and 

through a simulation with 8 pods network and 1000 coflows. 

The experiments are conducted in many-to-one scenario. 

Here, our results show that 4 queues is sufficient to achieve 

satisfactory result, similar to the findings in [5, 25]. We 

observe that the performance improvement affected by the 

number of queues follows the pattern of diminishing returns 

(Figure 11), which confirms Theorem 1. Here, we observe 

that the population of coflows in queue decreases as the 

number of queue increases, as expected in a heavy tail 

pattern.  
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Many-to-many pattern. We utilize Cloudera Industrial 

benchmark, TPC-DS query-42 (TPC-DS) [4], and Facebook 

Tao structure (FB-Tao) [28, 32] to evaluate Stream in many-

to-many scenario (because Facebook trace only consists of 

coflow with many-to-one). We incorporate benchmarks and 

insights from [3, 4, 19, 21, 23, 24, 32] and reorganize the 

original trace to generate a more realistic trace according to 

DAG structure in Figure 2a and 2b. Each DAG structure is 

made up of sub-coflows that are actually exact replications of 

a coflow taken from the original trace; and each DAG 

structure is mapped to a different coflow from the original 

trace.  The coflow size with many-to-many pattern is 

described in table 3. Overall, Stream performs better than 

Baraat and FS in both TPC-DS and FB-Tao structures, and 

performs on average comparable to Aalo. 

 With TPC-DS benchmark Figure 12 demonstrates that 

Stream is 1.85× better (on average) in comparison to Baraat 

and FS, while Stream and Aalo shares similar performance 

on average in both 1G and 10G networks. Also notice in 

Figure 12 that Stream outperforms Baraat, FS, and Aalo in 

category I by 7.43×, 12.12×, and 1.79× respectively in 1G 

network. In 10G network Stream performs better by 3.51×, 

6.19×, and 1.02× than Baraat, FS, and Aalo respectively. In 

summary, relative to both Baraat and FS, Stream is at least 

1.71× better in 1G network and 1.83× better in 10G network. 

Stream’s performance is comparable to Aalo on average, 

except in the middle category in both 1G and 10G network.  

With FB-Tao, on average, Stream outperforms Baraat and 

FS, by 1.75× and 1.833× faster respectively in 1G network 

(Figure 13), while Stream achieves a comparable outcome to 

Aalo. Stream also outperforms Baraat and FS by average 

1.85× and 1.9× respectively in 10G network, and Stream is 

only within 2% to Aalo. Moreover, Stream also outperforms 

Baraat, FS, and Aalo with smaller coflow from category I by 

16.9×, 28.79×, and 2.81× respectively in 1G network, and 

7.53×, 15.68×, and 1.1× respectively in 10G network. In 

Summary, Stream outperforms both Baraat and FS by at least 

1.7× in both 1G and 10G networks. In comparison to Aalo, 

Stream performance is comparable across category except in 

1GB-10GB and 10GB-100GB categories. 

Stream performs overall better than Baraat and FS in this 

scenario. By using WP, IR, and CP approaches, Stream is 

able to quickly gather information (e.g. number of sub-

coflows in a coflow and sub-coflow state) and rapidly 

estimate coflow state. Therefore, Stream can quickly 

differentiate between small and large coflows and allocate the 

appropriate resources. In contrast, Baraat’s scheduler only 

utilizes information that is available at the switch, which may 

result in less information for scheduling decision. As for FS, 

its performance is inferior caused by lack of coordination.      

On average, Stream’s performance is comparable to that of 

Aalo. Observe specifically category 1 (6MB-1GB), Stream 

outperforms Aalo by up to 2.8×. This is because in Aalo large 

and mice coflows may be processed together until a large 

coflow is detected when bytes received exceeds the threshold 

of mice coflow. This could lead to lower CCTs for mice 

coflows. On the other hand, Stream differentiates between 

small and large coflows at sub-coflow level because one of 

our assumptions is that a mice coflow may consist of small 

sub-coflows. Stream demotes large sub-coflows when their 

individual bytes received exceeds the threshold of mice sub-

coflow.  This way, a large coflow consisting of large sub-

coflows can be deprioritized early, even before it exceeds the 

threshold of mice coflow. In the case of large coflow with 

many mice sub-coflows, it will be detected by the parents of 

mice sub-coflows with our Child-to-Parent scheme. 

 For categories II and III which makes up to 20% of total 

coflows, Aalo is more advantageous over Stream (0.4×) 

because Aalo is a centralized system with a global view, 

enabling it to be more precise in distinguishing coflows with 

similar characteristics, leading to better performance in these 

two categories. This slight disadvantage does not negate 

Stream’s superior performance in all categories compared to 

other decentralized schemes. 

  

Fig. 14. The impact of threshold value for first priority queue in 1G network 

with Facebook TAO structure in Many-to-many scenario. 

Trade-off. To evaluate how threshold selection may impact 

CCTs in Stream, we employ different values as the threshold 

for the highest priority queue in 8 pods 1G network of 4 

priority queues with FB-Tao benchmark. As threshold value 

increases, Stream allows larger size coflows to be processed 

as mice coflows. While doing this improve the CCTs of some 

coflows in the highest priority queue, it degrades others in the 

same queue (Figure 14). This is because more coflows are 

competing for the resources. The other effect is that a longer 

processing delay in higher priority queue means a longer wait 

in lower priority queue. This finding is consistent with 

Kleinrock’s Conservation Law for priority scheduling [26] 

which says that we cannot improve the response time of one 

class of task by increasing its priority without hurting the 

response time of at least one other class. Kleinrock’s 

Conservation Law also applies to Baraat and Aalo where both 

schemes sacrifice the performance of mice coflows to resolve 

starvation of large coflows.  

V. RELATED WORK  

One of the early works on coflow scheduling is Orchestra 

[6], where coflows are scheduled using FIFO. Varys [4] and 

Aalo [5] later improved the performance in [6] by prioritizing 

smallest-bottleneck-first and smallest-total-size-first in their 

scheduling mechanisms. In comparison to other approaches, 

Aalo [5] assumes coflow size is not known ahead of time. 

RAPIER [7] and OMCoflow [37] incorporate routing 
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algorithm into their schemes. Likewise, CORA [8] integrates 

resource allocation solution into its flow scheduling scheme. 

Following that, the authors of [9] consider coflows with 

different levels of importance and reformulate the problem 

into weighted CCTs minimization problem. CODA [36] is the 

first work to leverage machine learning techniques to infer and 

schedule coflows. These are all centralized approaches that 

may provide good performance. However, centralized 

approaches are generally hindered by the high overhead cost 

of managing a centralized system.  

The other alternative is the decentralized approach. The 

current decentralized coflow scheduling scheme is pioneered 

by Baraat [3], a heuristic that adopts FIFO with some level of 

multiplexing that allows mice flows to be processed in the 

background in the presence of large coflows. Otherwise, mice 

flows are processed according to FIFO. However, this 

approach has a few drawbacks. Since the scheduling decision 

is made locally at switches, this makes gathering information 

on coflow more challenging for the scheduler if flows of a 

same coflow that do not traverse through the same switch. 

Additionally, the solution also requires switch source code 

modification, which is not deployable friendly. Optas [27] is 

the other decentralized scheduling, but is designed specifically 

for a special case of coflows of size 4MB or less. Different 

from these solutions, our proposal solves general coflow 

scheduling problem by opportunistically taking advantage of 

many-to-one and many-to-many patterns.  

VI. CONCLUSION 

Stream is a coflow scheduling scheme that minimizes 

CCT in decentralized fashion. It opportunistically takes 

advantage of the receiver in many-to-one and many-to-many 

communication patterns, utilizing C-SJF and WP-IR-CP 

approaches. The outcomes from both our testbed experiments 

and large-scale network simulation demonstrate that Stream 

is an effective and practical solution in improving network 

performance in datacenter, performing particularly well in 

heavier traffic. Finally, we also demonstrate that our solution 

is readily implementable. 
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