

Stream: Decentralized Opportunistic Inter-Coflow

Scheduling for Datacenter Networks

Hengky Susanto, Hao Jin, and Kai Chen

SING Group, Hong Kong University of Science and Technology

{hsusanto, hjinae, kaichen}@cse.ust.hk

Abstract— Coflow scheduling can improve application-level

communication performance for data-parallel clusters.

However, most prior coflow scheduling schemes are based on

the centralized approach, which achieve good performance but

suffers from high control overhead and scalability issue. On the

other hand, state of the art decentralized solution requires

switch modification, which makes it hard to implement. In this

paper, we present Stream, the decentralized and readily-

implementable solution for coflow scheduling. The key idea of

Stream is to opportunistically take advantage of many-to-one

and many-to-many coflow patterns to coordinate coflows

without resorting to the centralized controller, and then emulate

shortest coflow first scheduling to minimize the average coflow

completion time (CCT). We implement Stream with existing

commodity switches and show its performance using both

testbed experiments and large-scale simulations. Our evaluation

results show that Stream’s performance is comparable to the

centralized solution, and outperforms the state of the art

decentralized scheme by 1.77x on average.

I. INTRODUCTION

Network traffic in today’s data-parallel clusters is often

shaped by requirements at the application-level, and coflow

provides an abstraction that bridges application-level

semantic and the network [4, 15]. At the network level, coflow

refers to a set of parallel flows associated with a specific task

given by the application, and all flows in a coflow must be

completed for the completion of a communication stage. In

other words, minimizing coflow completion time (CCT) may

result in a shorter completion time of the corresponding task

and improve performance at application-level.

A number of proposals formulate coflow scheduling into

CCT minimization problem. Most of the prior schemes are

based on a centralized approach [4-9], where a single

controller makes the coflow scheduling decision for the entire

system. The centralized approach achieves good performance

but suffer from a high control overhead (e.g., synchronization,

fault tolerance, scalability, etc.). Alternatively, the state of the

arts decentralized solution [3] requires customized

modification in switches and this makes implementation and

deployment difficult. In this paper we present Stream, a

decentralized and readily-implementable solution for coflow

scheduling, which opportunistically takes advantage of many-

to-one and many-to-many coflow communication patterns

without relying on a central controller.

Many-to-one is a communication pattern of a single

receiver communicating with multiple senders to complete a

single coflow [19-24, 35]. We observe that receiver is a

natural position for coordinated coflow scheduling, since the

overall coflow information can be available there. To

minimize average CCT, Stream emulates conditional Shortest

Job First (C-SJF) by prioritizing smaller coflows over larger

ones. Stream assigns a priority to each coflow by considering

its total number of bytes received at the receiver and other

conditions such as the number of completed flows of the same

coflow; the priority is gradually decreased as the total number

of bytes received increases. Then, SJF is enforced by utilizing

priority queuing, a built-in function available in today’s

commodity switches, to ensure smaller coflows are prioritized

over larger coflows.

We extend the above scheme to the many-to-many pattern,

where multiple receivers communicate with multiple senders

[18, 20, 23] and a coflow consists of multiple sub-coflows.

Each sub-coflow is many-to-one. For this, Stream also utilizes

the receiver to schedule coflows. However, in this scenario

receivers of different sub-coflows may not directly exchange

information with one another, therefore the receivers of a

coflow may not have a full picture of the coflow (e.g., the total

bytes received in a coflow). The lack of shared information

may lead to poor outcomes. To resolve this challenge, Stream

complements C-SJF with three additional schemes. (𝑖)
Weighted-Priority: the priority decision is weighted such that

sub-coflows of the same coflow that arrive later will be

deprioritized faster. (𝑖𝑖) Information-Relay: Stream also takes

advantage of senders that are serving multiple receivers of the

same coflow by relaying information (i.e. bytes received)

between these receivers. (𝑖𝑖𝑖) Child-to-Parent: in multi-stage

scenario where the completion of a parent sub-coflow is

dependent on the completion of child sub-coflows of the same

coflow, the receiver of child sub-coflow, upon its completion,

will communicate its size (bytes received) to the receiver of

the parent sub-coflow. This allows the receiver of the parent

sub-coflows to make better scheduling decision. By this

design, Stream is effective in prioritizing smaller coflows over

larger coflows in many-to-many scenarios.

We have implemented a Stream prototype and deployed it

in a small-scale testbed. Our implementation verifies that

Stream can be readily deployed in today’s commodity

datacenters without requiring modification to switch

hardware. Our testbed experiment results show up to 1.3×

faster CCT on average and 1.87× faster with mice coflow

compared to TCP fair sharing.

We further evaluate Stream through a large-scale trace-

driven simulation with a production trace of coflow traffic

from Facebook datacenter [4]. In the many-to-one scenario,

Stream shows 1.4× and 1.77× faster CCT on average

compared to the state of the art decentralized solution [3] and

per-flow fair sharing scheme respectively (and 2.7× and 5.1×

faster respectively with mice coflows). At the same time,

Stream achieves comparable outcomes to the centralized

scheduler, Aalo [5]. For further evaluation, we include two

other case studies: multi-wave coflow (flows of the same

coflow arriving at different times) and bursty traffic (coflows

arriving within the same interval). Stream improves the

average CCT by up to 2.8× in the multi-wave study and at

least 1.9× faster in bursty traffic study compared to the

decentralized and per-flow fair sharing schemes. In many-to-

many scenario, the evaluation is performed by utilizing two

benchmarks: TPC-DS [5] query and Facebook Tao structure

[28]. Stream outperforms both Baraat and per-flow fair

sharing by up to 1.85× faster on average. Compared to

centralized scheme, Stream achieves comparable performance

in both case studies.

This paper is organized as follows. We begin by

presenting background information in section II. Stream is

described in detail in section III. Simulation results are

presented in section IV, followed by previous related work in

section V and concluding remarks in section VI.

II. BACKGROUND

This section provides a general overview of coflow

structure, a description of coflows in production, and network

model.

Fig. 1. CDF plot: a) coflow size , b) length, and c) width from Facebook

datacenter [4], and d) coflow size in Bing, Microsoft datacenter [3].

Fig. 2. Network topologies: Big-Switch topology [4,5] (left), FatTree

topology [30] (middle), and a simple network topology (right).

Coflow structure. Cluster computing applications today

generally follow many-to-one model. For example, mapper

and reducers in Map-Reduce [18] are respectively the

receiver and senders in a coflow. Spark [20] is another

framework that utilizes many-to-one pattern for enabling data

reuse in applications. Others include Dryad [19], DryadLINQ

[21], SCOPE [22], Pregel [23], GraphLab [24], Tachyon [35],

etc. To confirm this finding, we have analyzed production

trace of coflow traffic from Facebook datacenter [4] and we

observe that many-to-one pattern is also found in the

production trace. Since this pattern is common among

applications, we design our proposed coflow scheduling

scheme to take advantage of the receiver in many-to-one

model to coordinate the flow transmission of coflow without

resorting on a central controller.

Coflows in production. The authors of [4] discover that

coflow size follows the heavy trailed distribution. Only 8%

(15%) of coflows has the size of at least 10 GB (1 GB) in

Facebook datacenter, yet they are responsible for 98%

(99.6%) of the traffic. In other words, the majority of coflows

are relatively small coflow size (Figure 2a, 2b, and 2c).

Findings of authors of [3] from Bing search application in

Microsoft’s datacenter (Figure 4d), and a further investigation

in [6] also concur that coflow size follows the heavy tailed

distribution. A similar trend is also observed in [14] where the

data-mining distribution has a very heavy tail with 95% of all

data bytes belonging to 3.6% of flows larger than 35MB. This

means the system is predominantly populated by shorter

flows, but the traffic is mostly taken up by minority flows.

Network model. The two popular network topologies

(Figure 2) often used in scheduling scheme design for

datacenter are: (𝑖) Big-Switch-based topology [4,5,10,13], a

non-blocking datacenter fabric where processing and queue

delay are negligible. This model only focuses on bottleneck

in ingress and egress ports (machine NICs) which allows

simpler computation. (𝑖𝑖) Tree-based topology [2, 3, 7, 8, 10,

25] like FatTree [30]. To choose between these two

topologies, we conduct few experiments in our testbed and

NS-3 simulator with network topology illustrated in Figure 2

(right). We discover that processing and queuing delay in

switches in non-edge network does matter. Our finding

confirms the results of [2, 10, 11 25]. The bottleneck shifts

from edge and becomes more distributed because today’s

NIC speed catches up to switches processing speed [31]. For

this reason, we adopt the tree based topology and incorporate

it into our design.

III. STREAM DESIGN

Stream is a decentralized solution that opportunistically

takes advantage of many-to-one and many-to-many patterns

to coordinate coflows. In the design, we consider the

following coflow characteristics: the number of parallel

flows (width), total bytes (size), and the longest flow in bytes

(length). These characteristics determine the state of a

coflow, for example, the number of flows in a coflow that

have been completed, the amount of bytes received per

coflow, etc. As prior works [3-9, 37], Stream assumes that

information on coflow ID can be derived from upper layer

applications.

A. Problem Formulation

Consider the following offline scheduling problem with 𝑛

coflows in a system indexed by 𝑐 = 1, 2, …, 𝑛. Then, the

objective of scheduling problem is as follows.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑡𝑐
𝑛

𝑐=1
 , (1)

∑ 𝑥𝑓≤ℬ𝑙
𝑓∈𝑙

, ∀𝑙∈𝐿, (1.𝑎)

𝑤𝑓≤𝒯𝑤 , ∀𝑓∈𝑐, (1.𝑏)

𝑝𝑖<𝑝𝑖+1, ∀𝑝𝑖,𝑝𝑖+1∈𝑓, (1.𝑐)

𝑂𝑣𝑒𝑟 𝑡𝑐,𝑤𝑓≥0. Notation 𝑡𝑐 denotes the completion time of

coflow 𝑐 and it is described as the following expression: 𝑡𝑐=

a) b) c)
d)

max(𝑡𝑓| ∀𝑓∈𝑐), where 𝑡𝑓 denotes the completion time of

flow 𝑓. In other words, 𝑡𝑐 is determined by the completion

time of the longest flow’s completion time in a coflow.

Constraint (1.a) assures aggregate flow traversing link 𝑙 does

not exceed link capacity ℬ𝑙. Constraints (1.b) and (1.c) assure

starvation and packet out-of-order respectively are mitigated.

It is also important to note CCTs minimization is an NP-Hard

problem [3, 4] and reducible to Open Shop Problems [12].

B. Many-to-one Pattern

We begin by addressing coflow scheduling problem in

many-to-one scenario on the premise that coflow size is

unknown a priori.

Figure 3. Stream overview in many-to-one scenario.

Generally, Stream utilizes C-SJF to minimize the average

CCT by prioritizing smaller coflows over larger ones. Figure

3 summarizes Stream’s C-SJF: the receiver determines the

priority of a coflow and communicates it to each sender.

Next, the senders transmit data with the priority determined

by the receiver. The priority is then enforced at switches by

utilizing strict priority queuing, a built-in function available

in today’s commodity switches.

C-SJF is accomplished by first comparing the coflow size

to a demotion threshold 𝒯 at the receiver’s end: if the coflow

size exceeds 𝒯, then the coflow will be deprioritized, which

results in deprioritization to all its flows. However, since

coflow size is unknown a priori, a straightforward

measurement may not be possible. To address this issue, our

solution is inspired by [5, 25]. Initially every coflow is

assigned to the highest priority and the priority is later

adjusted as the information on the amount of bytes received

becomes available at the receiver. Then, the receiver notifies

its senders with new priority updates by embedding the

updates in the ACK packet. Secondly, the scheme takes

coflow condition into consideration in deciding the priority

(e.g. number of completed flows). Thirdly, to ensure

compatibility with the existing commodity switches, Stream

performs the scheduling at the receiver’s end because

information on coflow and its flows are accessible there.
Lastly, SJF is enforced by utilizing multiple queues, which is

commonly available in the existing commodity switches, to

implement strict priority queuing (SPQ).

Although it has been pointed out in [5] that SPQ may

introduce the risk of starvation and Weighted Fair Queuing

(WFQ) may provide a better solution, SPQ is preferable for

two reasons: first of all, priority queuing provides better in-

network prioritization and potentially achieves lower CCT.

Secondly, WFQ may cause TCP packet out of order problem.

We will address the starvation concern later in this paper.

Fig 4. (a) Coflow dependency in Claudera’ TPC-DS [4], and (b) Facebook’s

Tao Architecture [28,32], where each layer represents the webserver, cache

follower, cache leader, and database. (c) Coflow sub-ID of TPC-DS and (d)

Tao Architecture generated in Weighted-Priority Approach.

Coflow priority decision. Here, we present Stream’s priority

decision mechanism. Consider 𝐾 priority queues in the

commodity switches [1] and given coflow 𝑐, priority 𝑃𝑓
𝑘

denotes 𝑘𝑡ℎ priority queue assigned to flow 𝑓∈𝑐, such that

1≤𝑘≤𝐾. Then, the priority arrangement is defined as

follows: 𝑃𝑓
1>𝑃𝑓

2>⋯>𝑃𝑓
𝑘>⋯>𝑃𝑓

𝐾, where 𝑃𝑓
1 is the

highest priority and 𝑃𝑓
𝐾 is the lowest priority. Every 𝑃𝑓

𝑘 is

associated to threshold 𝜏𝑘. Currently, existing commodity

switch typically supports 8 priority queues [1]. Let 𝑃𝑓 denote

the priority assigned to 𝑓, such that 𝑃𝑓=𝑃𝑓
𝑘. Initially, all 𝑓 is

assigned to 𝑃𝑓
1, such that ∀𝑓∈𝑐,𝑃𝑓=𝑃𝑓

1. Therefore, given

flow size 𝑥𝑓≥0, the priority 𝑃𝑓 is decided as follows.

𝑃𝑓=𝐾−⌈𝐾.min(1,
𝜏𝑘+𝛼 ℋ𝑐
∑ 𝑥𝑓𝑓∈𝑐

)⌉, for ∃𝑥𝑓>0, (2)

ℋ𝑐=𝜏𝑘(
 𝑛𝑐
𝑓𝑛𝑠ℎ

𝑛𝑐
+

𝑛𝑐

∑ 𝑥𝑓𝑓∈𝑐
) , (3)

where 𝑛𝑐
𝑓𝑛𝑠ℎ

 and 𝑛𝑐 in (3) denote the number of flows in

coflow 𝑐 that have completed and the total number of flows

in 𝑐. The ratio
𝜏𝑘

∑ 𝑥𝑓𝑓∈𝑐
 in (2) enforces SJF emulation. Observe

that 𝑃𝑓 decreases as ∑ 𝑥𝑓𝑓∈𝑐 grows, which results in
𝜏𝑘

∑ 𝑥𝑓𝑓∈𝑐
<

1. This equality implies that coflow with ∑ 𝑥𝑓𝑓∈𝑐 >𝜏𝑘, for

𝑘>1, will be deprioritized. The ceiling function in (2)

assures that 𝑃𝑓 is an integer. The rationale behind the ratio

𝑛𝑐
𝑓𝑛𝑠ℎ

𝑛𝑐
 in (3) is to prioritize coflow that is suspected to be near

completion. Ratio
𝑛𝑐

∑ 𝑥𝑓𝑓∈𝑐
 is also utilized to influence smaller

coflows to be given higher priority. Since information may

not be a priori known in every framework, 𝑛𝑐 is adjusted as

new information becomes available. To summarize the

discussion, ℋ𝑐 can be interpreted as a function that captures

coflow conditions. This function can be further developed as

part of our future work. At last, to assure packet arriving out

of order is avoided, 𝑃𝑓=𝑚𝑎𝑥(𝑃𝑓,𝑃𝑓
′), where 𝑃𝑓

′ is the previous

decided priority.

C. Many-to-many Pattern

A coflow with many-to-many pattern may consist of

multiple sub-coflows and there may exist dependency

between sub-coflows. As illustrated in Figure 4, coflow with

this pattern can be modelled with Directed Acyclic Graph

a)

b)

c)

d)

(DAG). Similar observations are made in [5], that first sub-

coflows of a same coflows must be treated as a single entity.

Second, a parent sub-coflow only completes when the child

sub-coflows it depends on are completed. Some of the

challenges with this pattern in decentralized environment

include keeping track of the relationship among sub-coflows

from the same entity, deciding an appropriate priority when

coflow information is sparse, and sub-coflows within the

same entity may not be aware of the existence of other sub-

coflows. To address these challenges, Stream utilizes

Weighted-Priority, Information-Relay, and Child-to-Parent

approaches. With these approaches, Stream opportunistically

gathers information on bytes received. Then Stream utilizes

C-SJF to coordinate coflow where each receiver of the same

coflow manages its own sub-coflow.

Algorithm 1: Sub Coflow ID Assignment

1. InternalID[] // set of IDs proposed by parent

2. |Parents| // number of parents

3. Procedure Set_SubCoflowID (InternalID[])

4. If 𝐷=𝐷′ ,∀𝐷,𝐷′∈InternalID[], then

5. SubCoFlowID = InternalID[] + |Parents| – 1.

6. Else SubCoFlowID = 𝑚𝑎𝑥(InternalID[])

7. End procedure

Weighted-Priority (WP). Here, we propose a scheme to

weigh the priority decision such that sub-coflows of the same

coflow that arrive later will be deprioritized faster. Stream

utilizes coflow’s internal ID that is used to identify its sub-

coflows to weigh coflow priority. Internal ID determined

using algorithm 1 can be utilized as an indicator of the

number of sub-coflows that is locally discovered by a sub-

coflow. For example, if the internal ID=4, it means there are

at least 3 others sub-coflows in the entity. It can also be

utilized to describe dependency between sub-coflows. For

example, parents sub-coflow has a lower ID number than its

children. Stream extends eq. (2) of C-SJF scheme and

leverages internal IDs to weight the priority of each sub-

coflow by the following equations.

𝑃𝑓=𝐾−⌈𝐾.min(1 ,
𝜏𝑘+𝛼 ℋ𝑐
𝑊 ∑ 𝑥𝑓𝑓∈𝑐

)⌉ (4)

Here, weight 𝑊=𝛼.𝑙𝑜𝑔(𝑚+1) when 𝑚>1. Otherwise,

𝑊=1. The log function is to limit 𝑊’s influence on priority

decision. Variable 𝑚 denotes number of sub-coflows that is

discovered so far. Weight 𝑊 in eq. (4) is employed to allow

a faster deprioritization of sub-coflows that are members of a

large coflow. The internal ID is generated by parent sub-

coflows when they are invoking new sub-coflows (children)

using algorithm 1. The ID of the first batch of sub-coflows in

an entity is provided by “master” (or “manager”) whose task

is to invoke the first batch of sub-coflows [18, 20, 21, 23, 24].

When there are two or more parents assign different ID to the

same child, the largest ID is selected by the child. If there are

two or more parents assign a child with the same ID, then

child’s ID = ID + n_parents-1, where n_parent denotes the

number of child’s parents. For example, sub-coflow 𝐶8,4 in

Figure 4c and 4d

Information-Relay (IR). In applications like Map-Reduce

[18], multiple receivers of the same coflow may share

common senders. In other words, a sender may serve multiple

receivers of the same entity at the same time. Stream takes

advantage of these senders to relay information (i.e. bytes

received) between receivers of the same coflow. The sender

first observes coflow ID and sub-coflow (internal) ID, for

example, the coflow ID of coflow 𝐶8.1 (in Figure 3.a) is 𝐶8
and the internal ID is 1. Then, by comparing the coflow ID,

the sender knows that it is serving multiple receivers of the

same coflow. On this basis Stream leverages senders to relay

information (such as bytes received) between receivers by

piggybacking in data sent to its receivers. Then, the receiver

sums up the information on bytes received gathered from its

peers to determine the priority. Let 𝑆 denotes the total amount

of bytes received by receiver’s peers and 𝛽 denotes a weight

factor, the priority is determined by extending eq. (4), which

is described as in the following equation, eq. (5).

𝑃𝑓=𝐾−⌈𝐾.min(1 ,
𝜏𝑘+𝛼 ℋ𝑐

𝑊 (𝛽 𝑆+∑ 𝑥𝑓𝑓∈𝑐)
)⌉ (5)

Child-to-Parent (CP). We observe that the receiver of

parent sub-coflow is a natural position for gathering

information (bytes received) of its child sub-coflows because

it has access to the receivers of child sub-coflows. CP is

carried out in two stages. In the first stage, when a child sub-

coflow completes, the receiver of the child sub-coflow sends

a tuple, <Responses to query, sub-coflow size (bytes

received)>, to the receiver of the parent sub-coflow. In the

second stage, upon receiving a tuple, the parent sub-coflow

sums up the sub-coflow size of its child sub-coflows and

determine the priority utilizing eq. (5). This approach enables

Stream to capture large coflows that are made up of many

mice sub-coflows.

In addition, we also observe that threshold-based

approaches [5, 27] process large coflows and mice coflows

together until one of them exceeds the threshold for mice

coflow. Most likely that a mice coflow is made up of a few

mice sub-coflows. Thus, to detect large coflows earlier, the

threshold for highest priority is configured to detect mice sub-

coflows and, the larger coflows will be detected by parent

coflows using the approach described in the previous

paragraph.

By combining WP, IR, and BU with C-SJF, Stream

obtains the approximation of the number of sub-coflows, as

well as of the current coflow sizes. This allows Stream to

quickly direct coflows to the right queues and allocate

appropriate resources.

D. Practical Consideration

Multi-wave. Flows from the same coflow may arrive at

different times due to failures or stragglers [33]. Stream is

capable of handling events with multiple waves of arrival

flows as long as the flows use the appropriate coflow and sub-

coflow ID. The receiver keeps track of the amount of data

received regardless of the number of waves.

Starvation mitigation. To resolve starvation issue, when the

waiting exceeds pre-defined threshold, the sender of the

starving flow retransmits packets that have not been

acknowledged with higher priority assignment. The duplicate

packets will be dropped at the receiver by TCP [29] if there

is any. The process is repeated until the flow escapes the

starvation. Then, upon receiving a packet from the starving

flow, the receiver compares the priority of the recent received

packet with the priority currently assigned to the starving

flow. If they do not match, then the receiver increases that

coflow priority and notifies the sender of the starving flow

with new priority through the ACK packet.

Setting threshold. Although threshold is commonly used in

system design [3,4,10,25,27], there is very little study on how

threshold should be decided, such that system achieves

optimality. Authors of [25] attempt to formulate threshold

setting into convex optimization problem, but it uses too

many constraints in the formulation, which may not be

realistic. We attempt to compute the threshold for each

priority queue by utilizing eq. (6) from queuing theory [26].

We observe that doing this does not guarantee convexity, and

therefore it is possible that this is a non-convex problem (an

NP-Hard problem). At this point, the thresholds are decided

using exponentially-spaced threshold used in [5]. We will

further investigate the setting of threshold in our future work.

Number of queues required. Next, we address the question

of the number of queues required to ensure that our proposed

method will achieve a good performance.

Theorem 1. The performance improvement has diminishing

returns behavior as 𝑘→∞.

Proof. Let 𝐾=∞ denote the number of priority queues and

𝜇 be the processing rate of a link. The waiting time 𝑤𝑘 at

queue with priority 𝑘 𝜖 𝐾 is described by equation from [26].

𝑤𝑘=
1

𝜇

 1

𝑓∏ (1−∑ 𝜌𝑖
𝑗
𝑖=1)𝑘

𝑗=1

 , (6)

where 𝜌𝑘 denotes the traffic load 𝑘𝑡ℎ priority queue. Then,

we have 𝜌𝑘=
𝜆𝑘

𝜇
 [26], where 𝜆𝑘 denotes the arrival rate at 𝑘𝑡ℎ

priority queue. Observe that, given priority 𝑃𝑓
1>𝑃𝑓

2>⋯>

𝑃𝑓
𝐾, we have 𝑤1≤𝑤2≤⋯≤𝑤𝐾. Let 𝑈(𝑤𝑘) be the utility

function of 𝑤𝑘 to evaluate the performance of the system. The

performance evaluation can be formulized as follows.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒∑ 𝑈(𝑤𝑘)
𝐾
𝑘=0 , where 𝑈(𝑤𝑘)=

1

𝑤𝑘
. ∑ 𝑈(𝑤𝑘)
𝐾
𝑘=0 can also be

expressed as ∑ 𝑈(𝑤𝑘)
𝐾
𝑘=0 =

1

𝑤1
+
1

𝑤2
+
1

𝑤3
+⋯.+

1

𝑤𝐾
. Notice

lim
𝑘→∞
𝑈(𝑤𝑘)=0 , which also implies that the utility of 𝑈(𝑤𝑘)

diminishes as 𝑘→∞. Thus, the performance improvement

follows the behavior of diminishing returns. ∎

Theorem 1 implies that at some point the benefits of multiple

queues diminish as the number of queues increases, which is

consistent with findings in [5, 25] and confirmed by our

testbed and simulation results. We utilize 4 queues in our

experiments and achieve satisfactory outcomes.

Discussion. We acknowledge that the coflow patterns in

datacenter may not always follow many-to-one or many-to-

many, and further, it is not impossible that a coflow may

consist of individual flows. In these scenarios, Stream

behaves similar to existing scheduler like PIAS [25].

IV. EVALUATION

The performance of Stream is evaluated through

experiments in our testbed with 1G port switches and large-

scale simulation using Facebook data trace from [4,5]. Our

primary metric for comparison is the average CCT, and our

performance improvement factor is described as follows.

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡=
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐶𝐶𝑇𝑠

𝑆𝑡𝑟𝑒𝑎𝑚′𝑠 𝐶𝐶𝑇𝑠
.

If the improvement is greater (smaller) than one, Stream is

faster (slower).

The main results are summarized as follows:

1. In testbed experiment, relative to TCP fair sharing, Stream

improves the average CCT by up to 1.3× faster and the

average mice coflow CCT by up to 1.87× faster.

2. Large-scale simulation shows that on average, Stream

outperforms state of the art decentralized solution (Baraat)

and per-flow fair sharing by up to 1.4× and 1.71× faster

respectively, and only trailing by 0.87× compared to the

centralized solution, Aalo. For mice coflows, Stream is

2.7× and 5.1× better in comparison to Baraat and per-flow

fair sharing respectively, while achieving comparable

outcomes to Aalo.

3. In multi-wave scenario, Stream outperforms Baraat and

per-flow fair sharing by up to 1.7× and 2.8× faster.

Compared to Aalo, Stream achieves similar performance.

4. In many-to-many, on average Stream improves the

performance by up to 1.85× and 1.9× faster than Baraat

abd per-flow fair sharing respectively, while achieving

comparable performance to Aalo.

Fig. 5. Testbed Experiments with TCP and Stream of avg. CCT, avg. mice

coflows CCT, and 95th percentile avg. CCT. (a) Scenario one: 117 coflows

with 2160 flows. (b) Scenario two: 105 coflows with 1140 flows.

A. Testbed Experiment

Implementation: We build Stream prototype based on

modifying the TCP kernel module in Linux operating system.

Then, we implement client/server application to emulate

senders and receivers in many-to-one scenario by utilizing

socket programming. Here, client applications are the senders

and server applications are the receivers. We assume coflow

ID is provided by application layer in this implementation.

Hence, Senders utilize setsockopt to pass down coflow ID

from the application layer to the transport layer. This allows

the application layer to insert coflow ID into IP option field

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Avg. Mice 95th

Im
p

ro
ve

m
e

n
t

117 Coflows (2160 Flows)

a)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Avg. Mice 95th

Im
p

ro
ve

m
e

n
t

105 Coflows (1440 Flows)

b)

in TCP packet header. The ID is utilized to identify which

packet belongs to which coflow. At the receiver’s end, coflow

ID is extracted from packet received from its senders.

To communicate priority decision, the receiver utilizes the

reserve field in the TCP header of ACK to map the priority

(e.g. priority 2) to Differentiated Services Code Point (DSCP)

[29] bits of ACK packets that are sent to its senders. The 4

bits in Reserve field provides a range of integer 0 to 15, which

is sufficient to represent 8 priority queues.

These coflow monitoring and priority notification

schemes are accomplished by adding a few lines in TCP

kernel in Linux. At last, threshold information can be stored

in a file to allow thresholds to be adjusted without re-

compilation.

To meet the required constraints described in problem

formulation (1), capacity constraint in (1.a) can be addressed

by utilizing Explicit Congestion Notification (ECN) [29]

based protocol (DCTCP [11]), starvation constraint in (1.b)

can be elevated by senders quickly performing the starvation

mitigation when the timer expires at 10ms, which is TCP

RTOmin [11]. To satisfy packet out of order constraint (1.c),

Stream only deprioritizes coflows only if it is required.

Testbed: 8 servers connected to a Pica8 P-3297 48-port 1

Gigabit Ethernet, 4-port 1 Gigabit Ethernet commodity

switch with 2MB shared memory, which supports strict

priority queuing with at most 8 classes of services queue [1].

Each server is a Dell Server: PowerEdge R320 with CPU

Intel(R) Xeon(R) CPU E5-1410 0 @ 2.80GHz, 8G memory,

and Broadcom 5720 Dual Port 1Gb LOM Gigabit Ethernet

NIC. Each server runs Ubuntu 14.04.2 LTS with Linux 4.0

kernel. In our switch, we enforce strict priority queuing and

classify packet based on the DSCP field.

Experiment: To evaluate Stream, we create two experiment

scenarios in which 6 machines are running senders and a

machine running receivers. In the first scenario, the

experiment is conducted with 2160 TCP flows that make up

117 coflows. In the second scenario, there are 1440 TCP

flows which make up 105 coflows. In both scenarios, we

added the 8th server to generate background traffic of 500

Megabits per second (50% of the link capacity) using iperf,

which is a common traffic characteristic in datacenter [16].

We compare the average CCT of Stream to the average CCT

of TCP fair sharing. This set of experiments is conducted

using 8 priority queues. Our heavy tailed traffic pattern is

randomly generated according to traffic patterns from

Facebook and Bing search (Microsoft) [4, 3], and is

illustrated in Figure 1.

Experiment results. Our testbed experiment demonstrates

that when compared to TCP fair sharing, Stream achieves

better performance by 1.3× and 1.27× on average in the first

and second scenario respectively, as illustrated in Figure 5.

Also, as depicted in the same figure, in both scenarios Stream

reduces the average CCT of mice coflows by up to 1.7× and

1.87× respectively. Moreover, Stream also has better

performance by up 1.58× and 1.72× at 95th percentile in

comparison to scheduler with regular per-flow sharing in

both scenarios. Through these instances, we demonstrate that

Stream performs better than TCP fair sharing, especially in

network with higher traffic load.

Table 1 (left) and table 2 (right). Table 1 describes network size of FatTree

topology. Table 2 describes flow distribution in multi-wave coflow.

 I II III IV V
Size A 1MB-100MB 100MB-1GB 1GB-10GB 10GB-100GB >100GB

Size B 6MB-1GB 1GB-10GB 10GB-100GB 100GB-1TB >1TB

Table 3. Five categories of coflow with different size in many-to-one pattern
(size A) and many-to-many pattern (size B).

Fig. 6. Single wave in network in 1G switches (Figure a and b) and network
in 10G switches (Figure c and d).

Fig 7. Average CCT improvement in 8 pods 1G and 10G networks according

coflow categories described in table 3.

B. Large-scale Simulations

In this section, we evaluate Stream’s performance in

many-to-one and many-to-many scenarios. In many-to-one

scenario, we consider trace-driven, bursty, and multi-wave

traffic. In many-to-many, we utilize benchmarks from

Cloudera [5] and Facebook [28,32]. In all our simulations, we

use a production traffic trace collected from Facebook

datacenter, specifically from 150-racks (3000 machines) [5].

0

0.2

0.4

K8 K16 K24 K32 K48

C
TT

 (
m

s)

network Size

Avg Mice CCT

Baraat
Fair Sharing
Stream
Aalo

a)

0

10

20

30

40

50

60

70

K8 K16 K24 K32 K48

C
C

T
(m

s)

Network Size

Avg CCT

Baraat
Fair Sharing
Stream
Aalo

b)

0

0.005

0.01

0.015

K8 K16 K24 K32 K48

C
C

T
 (

m
s)

Network Size

Avg Mice CCT

Baraat
Fair Sharing
Stream
Aalo

c)

0

10

20

30

40

50

60

70

K8 K16 K24 K32 K48

C
C

T
(m

s)

Network Size

Avg CCT

Baraat
Fair Sharing
Stream
Aalo

d)

0

1

2

3

4

5

I II III IV V Avg

Im
p

ro
ve

m
e

n
t

Coflow Size Catergory

Avg CCT in 8 Pods Network (1G)
Baraat
Fair Sharing
Aalo

a)

0

0.5

1

1.5

2

I II III IV V AvG

im
p

ro
ve

m
e

n
t

Coflow Size Category

Avg CCT in 8 Pods Networks (10G)
Baraat Fair Sharing Aalo

b)

K Pods # of

Servers

of

Switches

k=8 128 80

k=16 1024 320

k=24 3456 720

k=32 8192 1280

k=48 27648 2880

Waves 1th 2nd 3th 4th

Single 100%

Two 90% 10%

Three 81% 9% 10%

Four 81% 9% 4% 6%

Simulation setting: We develop a flow-level simulator and

it accounts for the flow arrival and departure events, rather

than packet sending and receiving events. It updates the rate

and the remaining volume of each flow when event occurs.

We employ FatTree network topology [30] with up to 27,648

hosts (48 pods). We conduct our simulation with 1 Gigabit

(1G) switches to create a higher traffic load condition, as well

as 10 Gigabit (10G) switches where delay in non-network

edges is minimal. Our assumptions are: the switch has

sufficient buffer to store incoming data, each flow traverses

along one path, and coflow size follows heavy-tailed

distribution.

In our simulations, we compare Stream to per-flow fair

sharing, Baraat [3], and Aalo [5]. Per-Flow Fair-Sharing (FS)

is a scheme that shares the capacity equally among flows

traversing the same link. Baraat, a FIFO with limited

multiplexing (FIFO-LM) scheduler, is the state of the art

decentralized scheduler. To analyze how Stream performs

against centralized solution, we compare our solution to

Aalo. For simplicity, Aalo’s additional delay from managing

centralized system is not considered in the simulator and

information on coflow is made available instantaneously to

centralized controller. Additionally, based on findings in [5]

and results from our testbed experiment, 4 priority queues

provides the best outcome. Thus, Aalo and Stream employ 4

priority queues in their scheduling schemes. Moreover, in

principle, all schemes assume that coflow characteristics are

unknown ahead of time.

Traffic load. Stream is evaluated using traffic load by

replaying production traces from Facebook clusters [4, 5].

Bursty traffic pattern of coflows arriving at the same interval,

which is also common in datacenter [17, 32], is considered in

our study. We also incorporate the commonly used Equal-

cost multi-path routing (ECMP) [29] to route and load

balance flows in the flow simulator. Additionally, since TCP

is the common transport protocol in datacenter, we

implement rate limiter that behaves like TCP for all schemes,

except for Baraat where the rate limiter is implemented

according to its design in [3].

Many-to-one pattern. Here we provide an overview of

Stream’s performances in different network sizes in 1G and

10G networks. We then analyze how Stream performs under

heavier load. To evaluate Stream with different traffic loads

while preserving the authenticity of the original trace, we

increase the network size according as described in table 1.

In 1G network, on average, Stream achieves faster

completion time than Baraat and FS, by up to 1.4× and 1.77×

respectively (Figure 5b), but trailing by 0.87× compared to

Aalo (within 13%). Stream achieves up to 2.7× and 5.1×

faster for mice coflows compared to Baraat and FS

respectively (Figure 6a). Compared to Aalo (centralized),

Stream is trailing by 0.76× (within 24%).

In 10G networks, Stream on average achieves shorter

completion time than Baraat and FS by up to 1.5× and 2.1×

respectively, but trails 0.83× compares to Aalo (Figure 6d).

For mice coflows, Stream outperforms Baraat and FS by up

to 1.8× and 1.9× faster respectively; and within 13% of Aalo

(Figure 6c).

Fig. 8. The improvement with 2, 3, and 4 waves coflow in 8 pods 1G
network. The evaluation is categorized into 5 groups described in table 3A.

Further, we break down Stream’s performance according

to different categories described in table 3 using 8 pods

network with 1G and 10G switches. As illustrated in Figure

7, Stream outperforms Baraat and FS across all categories in

both 1G and 10G networks. Stream’s lower average CCT

compared to FS results from the higher resource dedicated to

higher priority coflow. Especially for smaller coflows,

Stream outperforms FS by up to 5× faster, as depicted in

Figure 7a. Also, Stream outperforms Baraat by up to 3×

better in group I and II (Figure 7a). Baraat’s performance

suffers from lower priority mice coflows queuing behind

higher priority larger coflows. Stream avoids this problem by

allowing smaller coflows to jump ahead of the queue by

deprioritizing larger coflows. On average, Stream performs

comparably well to Aalo. Stream slightly trails behind Aalo

for smaller coflows, an expected outcome for centralized

system with complete information. This explanation does not

address why Stream converges quicker than Baraat when the

traffic load decreases (Figure 7). This question will be

addressed later in this paper.

Notice in figure 5 that as network size scales up (k-pod is

increased from 8 to 48), the average CCT improvement

converges because there are more resources available and the

traffic becomes more distributed from load balancing with

ECMP.

Multi-wave scheduling. We modify the original trace by

varying the maximum number of concurrent senders in each

wave according to configuration provided by [4] as described

in table 3. In Figure 8, we demonstrate the importance of

coflow states across waves in 8 pods network. Stream

outperforms FS across waves by 1.7× and up to 2.8× with

smaller coflows. Stream outperforms Baraat up to 1.9× and

shares similar performance with Aalo across waves and

categories. Stream’s ability to approximate the states of a

coflow as a whole give it an advantage over FS. Stream

allows mice coflows to jump ahead of large coflows even

when they arrive later, while in Baraat mice coflow that come

later may end up queuing behind higher priority large

coflows.

Bursty traffic. We consider another scenario in datacenter

[17,32] where coflows arrive at the same time. The

simulation is performed in 8 pods 1G and 10G networks. The

original trace is modified such that all coflows arrive within

the same interval. Since Aalo and Baraat use FIFO in their

0

0.5

1

1.5

2

2.5

3

2 3 4 2 3 4 2 3 4 2 3 4 2 3 4

Im
p

ro
ve

m
e

n
t

Number of Waves

Baraat Fair Sharing Aalo

I II III IV V

schemes, we keep the same coflow ID and FIFO setting as

previous experiments. In 1G network, Stream outperforms

Baraat and FS by at least 1.9× faster on average (Figure 9a).

Notice that for coflow group II, Stream performs up to 4×

better than both Baraat and FS. Stream again achieves similar

outcomes with Aalo across the groups in this scenario. In 10G

network, Stream outperforms both Baraat and FS by 1.6× and

1.7× (Figure 9b) respectively, while Stream is within 7% of

Aalo across the groups.

Fig. 9. Improvement average CCT in bursty traffic in 1G and 10G networks.

Fig. 10. The CCT of the first 100 completed coflows with Baraat and Stream
in 1G and 10G networks.

In the following discussion we demonstrate why Stream

outperforms Baraat. Notice that in Figure 10, CCTs of the

first 100 coflows from Stream is flat, because they are

processed almost simultaneously and they complete at almost

the same time. In contrast, Baraat’s CCTs of the first 100

coflows rise linearly. This is because in FIFO, coflow that is

queued in the back must wait until all coflows ahead of it are

processed. Thus when coflows all arrive within the same

interval, those with lower priority end up with a longer wait

in the queue. The waiting time is even longer when there are

more high priority large coflows in the queue, because more

network resource are allocated to large coflows. As shown in

Figure 10, the higher the number of mice coflows, the longer

is the waiting time for mice coflows in the back of the queue.

We refer this phenomenon as LM-Effect which occurs

when there is more capacity allocated for limited

multiplexing (LM) than FIFO. Furthermore, LM-Effect is

propagated as flows traverse more queues, increasing the gap

between Stream and Baraat. With this insight, the intersecting

lines in Figure 10 can be interpreted as the limit of Baraat’s

improvement over Stream. Stream performs better than

Baraat when there is a higher number of mice coflows,

especially in datacenter where the majority (at least 90%) of

the population is mice coflows.

Fig. 11. Coflow scheduling with different number priority queues through
testbed and simulation experiments.

Fig. 12. Performance Improvement of Coflow with Many-to-many pattern
using TPC-DS query-42 benchmark in 8 pods 1G and 10G networks.

Fig. 13. Performance Improvement of Coflow with Many-to-many pattern
using Facebook-Tao structure benchmark in 8 pods (a) 1G and (b) 10G

networks.

Impact of number of queues: We conduct two experiments

with 2 to 7 priority queues in our testbed using similar setup

as in our previous testbed experiment with 30 coflows, and

through a simulation with 8 pods network and 1000 coflows.

The experiments are conducted in many-to-one scenario.

Here, our results show that 4 queues is sufficient to achieve

satisfactory result, similar to the findings in [5, 25]. We

observe that the performance improvement affected by the

number of queues follows the pattern of diminishing returns

(Figure 11), which confirms Theorem 1. Here, we observe

that the population of coflows in queue decreases as the

number of queue increases, as expected in a heavy tail

pattern.

0

1

2

3

4

I II III IV V Avg

Im
p

ro
ve

m
e

n
t

Coflow Size Category

Avg CCT in 8 Pods Network (1G)
Baraat Fair Sharing Aalo

a)

0

1

2

I II III IV V Avg

Im
p

ro
ve

m
e

n
t

Coflow Size Categories

Avg CCT in 8 Pods Network (10G)
Baraat
Fair Sharing
Aalo

b)

0

0.2

0.4

0.6

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

C
C

T
(m

s)

1G network

Baraat

Stream

0

0.1

0.2

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

C
C

T
 (

m
s)

10G Network

Baraat

Stream

8.9

9

9.1

9.2

9.3

2 3 4 5 6 7

A
vg

.
C

C
T

 (
m

s)

Number of Queues

Testbed

a)

39.3

40.3

41.3

42.3

2 3 4 5 6 7

A
vg

. C
C

T
 (

m
s)

Number of Queues

Simulation

b)

0

1

2

3

4

5

6

7

8

9

10

11

12

I

Im
p

ro
ve

m
e

n
t

a)

0

1

2

3

4

II III IV V avg

Im
p

ro
ve

m
e

n
t

Coflow Size Categories

8 Pods Network (1G) Baraat

Fair Sharing

Aalo

0

1

2

3

4

5

6

I II III IV V avg

im
p

ro
ve

m
e

n
t

Coflow Size Categories

8 Pods Network (10G) Baraat

Fair Sharing

Aalo

b)

0

4

8

12

16

20

24

28

I

Im
p

ro
ve

m
e

n
t

a)

0

1

2

3

II III IV V Avg

im
p

ro
ve

m
e

n
t

Coflow Size Category

8 Pods Network (1G) Baraat
Fair Sharing
Aalo

0

3

6

9

12

15

I

Im
p

ro
ve

m
e

n
t

b)

0

1

2

3

4

II III IV V Avg

Im
p

ro
ve

m
e

n
t

Coflow Size Catergory

8 Pods Network (10G) Baraat
Fair Sharing
Aalo

Many-to-many pattern. We utilize Cloudera Industrial

benchmark, TPC-DS query-42 (TPC-DS) [4], and Facebook

Tao structure (FB-Tao) [28, 32] to evaluate Stream in many-

to-many scenario (because Facebook trace only consists of

coflow with many-to-one). We incorporate benchmarks and

insights from [3, 4, 19, 21, 23, 24, 32] and reorganize the

original trace to generate a more realistic trace according to

DAG structure in Figure 2a and 2b. Each DAG structure is

made up of sub-coflows that are actually exact replications of

a coflow taken from the original trace; and each DAG

structure is mapped to a different coflow from the original

trace. The coflow size with many-to-many pattern is

described in table 3. Overall, Stream performs better than

Baraat and FS in both TPC-DS and FB-Tao structures, and

performs on average comparable to Aalo.

 With TPC-DS benchmark Figure 12 demonstrates that

Stream is 1.85× better (on average) in comparison to Baraat

and FS, while Stream and Aalo shares similar performance

on average in both 1G and 10G networks. Also notice in

Figure 12 that Stream outperforms Baraat, FS, and Aalo in

category I by 7.43×, 12.12×, and 1.79× respectively in 1G

network. In 10G network Stream performs better by 3.51×,

6.19×, and 1.02× than Baraat, FS, and Aalo respectively. In

summary, relative to both Baraat and FS, Stream is at least

1.71× better in 1G network and 1.83× better in 10G network.

Stream’s performance is comparable to Aalo on average,

except in the middle category in both 1G and 10G network.

With FB-Tao, on average, Stream outperforms Baraat and

FS, by 1.75× and 1.833× faster respectively in 1G network

(Figure 13), while Stream achieves a comparable outcome to

Aalo. Stream also outperforms Baraat and FS by average

1.85× and 1.9× respectively in 10G network, and Stream is

only within 2% to Aalo. Moreover, Stream also outperforms

Baraat, FS, and Aalo with smaller coflow from category I by

16.9×, 28.79×, and 2.81× respectively in 1G network, and

7.53×, 15.68×, and 1.1× respectively in 10G network. In

Summary, Stream outperforms both Baraat and FS by at least

1.7× in both 1G and 10G networks. In comparison to Aalo,

Stream performance is comparable across category except in

1GB-10GB and 10GB-100GB categories.

Stream performs overall better than Baraat and FS in this

scenario. By using WP, IR, and CP approaches, Stream is

able to quickly gather information (e.g. number of sub-

coflows in a coflow and sub-coflow state) and rapidly

estimate coflow state. Therefore, Stream can quickly

differentiate between small and large coflows and allocate the

appropriate resources. In contrast, Baraat’s scheduler only

utilizes information that is available at the switch, which may

result in less information for scheduling decision. As for FS,

its performance is inferior caused by lack of coordination.

On average, Stream’s performance is comparable to that of

Aalo. Observe specifically category 1 (6MB-1GB), Stream

outperforms Aalo by up to 2.8×. This is because in Aalo large

and mice coflows may be processed together until a large

coflow is detected when bytes received exceeds the threshold

of mice coflow. This could lead to lower CCTs for mice

coflows. On the other hand, Stream differentiates between

small and large coflows at sub-coflow level because one of

our assumptions is that a mice coflow may consist of small

sub-coflows. Stream demotes large sub-coflows when their

individual bytes received exceeds the threshold of mice sub-

coflow. This way, a large coflow consisting of large sub-

coflows can be deprioritized early, even before it exceeds the

threshold of mice coflow. In the case of large coflow with

many mice sub-coflows, it will be detected by the parents of

mice sub-coflows with our Child-to-Parent scheme.

 For categories II and III which makes up to 20% of total

coflows, Aalo is more advantageous over Stream (0.4×)

because Aalo is a centralized system with a global view,

enabling it to be more precise in distinguishing coflows with

similar characteristics, leading to better performance in these

two categories. This slight disadvantage does not negate

Stream’s superior performance in all categories compared to

other decentralized schemes.

Fig. 14. The impact of threshold value for first priority queue in 1G network

with Facebook TAO structure in Many-to-many scenario.

Trade-off. To evaluate how threshold selection may impact

CCTs in Stream, we employ different values as the threshold

for the highest priority queue in 8 pods 1G network of 4

priority queues with FB-Tao benchmark. As threshold value

increases, Stream allows larger size coflows to be processed

as mice coflows. While doing this improve the CCTs of some

coflows in the highest priority queue, it degrades others in the

same queue (Figure 14). This is because more coflows are

competing for the resources. The other effect is that a longer

processing delay in higher priority queue means a longer wait

in lower priority queue. This finding is consistent with

Kleinrock’s Conservation Law for priority scheduling [26]

which says that we cannot improve the response time of one

class of task by increasing its priority without hurting the

response time of at least one other class. Kleinrock’s

Conservation Law also applies to Baraat and Aalo where both

schemes sacrifice the performance of mice coflows to resolve

starvation of large coflows.

V. RELATED WORK

One of the early works on coflow scheduling is Orchestra

[6], where coflows are scheduled using FIFO. Varys [4] and

Aalo [5] later improved the performance in [6] by prioritizing

smallest-bottleneck-first and smallest-total-size-first in their

scheduling mechanisms. In comparison to other approaches,

Aalo [5] assumes coflow size is not known ahead of time.

RAPIER [7] and OMCoflow [37] incorporate routing

0

50

100

150

200

1
0

M
B

-1
0

0
M

B

1
0

1
M

B
-1

G

1
G

B
-1

0
B

G

1
0

G
B

-1
0

0
G

B

1
0

G
B

-1
TB

1
TB

-1
0

TB

1
0

TB
-1

8
TB

1
8

TB
-4

5
TB

7
2

TBn
u

m
b

er
 o

f
C

o
fl

o
w

s

Coflow Size

Size Distribution

a)

0.75

1.25

1.75

2.25

2.75

3.25

T(50) T(60) T(80) T(100) T(120) T(150) T(170)

N
o

rm
al

iz
ed

 C
C

T

Threshold (value)

Thresold Impact
10MB -100MB
100MB - 1GB
1GB - 100GB
100GB - 1TB
> 1TB

b)

algorithm into their schemes. Likewise, CORA [8] integrates

resource allocation solution into its flow scheduling scheme.

Following that, the authors of [9] consider coflows with

different levels of importance and reformulate the problem

into weighted CCTs minimization problem. CODA [36] is the

first work to leverage machine learning techniques to infer and

schedule coflows. These are all centralized approaches that

may provide good performance. However, centralized

approaches are generally hindered by the high overhead cost

of managing a centralized system.

The other alternative is the decentralized approach. The

current decentralized coflow scheduling scheme is pioneered

by Baraat [3], a heuristic that adopts FIFO with some level of

multiplexing that allows mice flows to be processed in the

background in the presence of large coflows. Otherwise, mice

flows are processed according to FIFO. However, this

approach has a few drawbacks. Since the scheduling decision

is made locally at switches, this makes gathering information

on coflow more challenging for the scheduler if flows of a

same coflow that do not traverse through the same switch.

Additionally, the solution also requires switch source code

modification, which is not deployable friendly. Optas [27] is

the other decentralized scheduling, but is designed specifically

for a special case of coflows of size 4MB or less. Different

from these solutions, our proposal solves general coflow

scheduling problem by opportunistically taking advantage of

many-to-one and many-to-many patterns.

VI. CONCLUSION

Stream is a coflow scheduling scheme that minimizes

CCT in decentralized fashion. It opportunistically takes

advantage of the receiver in many-to-one and many-to-many

communication patterns, utilizing C-SJF and WP-IR-CP

approaches. The outcomes from both our testbed experiments

and large-scale network simulation demonstrate that Stream

is an effective and practical solution in improving network

performance in datacenter, performing particularly well in

heavier traffic. Finally, we also demonstrate that our solution

is readily implementable.

Acknowledgements. This work is supported in part by the

Hong Kong RGC ECS- 26200014, GRF-16203715, GRF-

613113, CRF-C703615G, HKUST-PDF, and the China 973

Program No.2014CB340303. We thank our shepherd Javad

Grader, the anonymous ICNP reviewers, and members from

HKUST SING Lab for their valuable feedback. We thank

Zhouwang Fu and Ge Chen for assisting our experiments.

Reference

[1] http://www.pica8.com/documents/pica8-datasheet-picos.pdf

[2] M. Alizadeh, , et al., “Less is More: Trading a little Bandwidth for

Ultra-Low Latency in theDataCenter”, Usenix NSDI 2012.

[3] F. Dogar, et al, “Decentralized Task-Aware Schduling for Data Center

Networks”, ACM SIGCOMM, 2014.

[4] M. Chowdhury, Y. Zhong, and I. Stoica, ”Efficient Coflow Scheduling
with Varys”, ACM SIGCOMM, 2014.

[5] M. Chowdhury and I. Stoica, ”Efficient Coflow Schduling Without

Prior Knowldege”, ACM SIGCOMM, 2015.

[6] M. Chowdhury, et al,”Managing Data Transfer in Computer Clusters
with Orchestra”, ACM SIGCOMM, 2011.

[7] Y. Zho, et al, “RAPIER: Integrating Routing and Scheduling for

Coflow-aware Data Center Networks”, IEEE INFOCOM 2015.

[8] Z. Huang, et al “Need for Speed: CORA Scheduler for Optimizing

Completion Time in the Cloud”, INFOCOM 2015.

[9] Z. Qiu, et al, “ Minimizing the Total Weighted Completion Time of

Coflows in Datacenter Networks”, ACM SPAA, 2015.

[10] M. Alizadeh, et al, “pFabric:Minimal Near-Optimal Datacenter
Transport”, ACM SIGCOMM, 2013.

[11] M. Alizadeh, et al, “Data Center TCP (DCTCP)”, ACM SIGCOMM,

2010.

[12] S. Gawiejnowicz, “Time-Dependent Scheduling”, Springer 2008.

[13] M. Alizadeh, et al., “CONGA: Distributed Congestion-Aware Load

Balancing for Datacenters:, ACM SIGGCOMM, 2014.

[14] A. Greenberg et al., “VL2: a Scalable and Flexible Data Center

Network”, SIGCOMM 2009.

[15] M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for
Cluster Applications”, USENIX HotNets, 2012.

[16] A. Munir, et al, “Friends, not Foes – Syntehsizing Exiting Transport

Strategies for Data Center Networks, ACM SIGCOMM, 2014.

[17] T. Benson, A. Akella, and D. A. Maltz, ”Network Traffic

Characteristics of Data Centers in the Wild”, ACM IMC, 2010.

[18] J. Dean and S. Ghemawat, “MapReduce: Simplifed Data Processing on
Large Clusters”, USENIX OSDI, 2004.

[19] M. Isard, et al, “ Distributed Data-Parallel Programs from sequential

Building Block”, EuroSys, 2007.

[20] M. Zhaharia, et al., “Resilent Distributed Datasets: A Fault-Tolerant

Abstraction for in-Memory Custer Computing”, USENIX NSDI, 2008.

[21] Y. Yu, et al., “DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High Lelvel Language”, USENIX

OSDI, 2012.

[22] R. Chaiken, et al.”SCOPE: Easy and Efficient Parallel Processing of
Massive Dataset”, VLDB, 2008.

[23] G. Malewicz, et al.,”Pregel: A System for Large-Scale Graph

Processing”, ACM SIGMOD, 2008.

[24] Y. Low, et al., “Distrubted GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud”. PVLDB 2012.

[25] W. Bai, et al, ”Information-Agnostic Flow Scheduling for Comodity
Data Centers”, USENIX NSDI, 2015.

[26] L. Kleinrock, “Queuing Systems, Vol 2 Coomputer application”, New

York, Wiley, 1976.

[27] Z. Li, et al, “OPTAS: Decentralized Flow Monitoring and Scheduling

for Tiny Tasks”, IEEE INFOCOM, 2016.

[28] N. Bronson, et al, “TAO: Facebook’s Distributed Data Store for the
Social Graph”, USENIX ATC, 2013.

[29] J. Kurose and K. Ross, “Computer Networking, a Top Down Approach

6th addition”, Pearson, 2013.

[30] M. Al-Fares, A. Laukissas, and A. Vahdat, “A Scalable, Commodity

Data Center Network Architecture”, ACM SIGCOMM, 2008.

[31] A. Vahdat, et al,”Scale-Out Networking in the Data Center”, IEEE
Micro, Vol. 30 , Issue 4, p. 29-41, 2010.

[32] A. Roy, et al, “Inside the Social Network’s (Datacenter) Network,” in
ACM SIGCOMM 2015.

[33] G. Anantharnarayanan, “PACMan: Coordinated memory caching for

parallel” in USENIX NSDI, 2012.

[34] R. Bifulco, et al.”Improving SDN with InSpired Switches”, ACM

SOSR, 20016.

[35] H. Li, et al.,” Tachyon: Reliable, Memory Speed Storage for Cluster
Computing Frameworks”, IEEE SOCC, 2014.

[36] H. Zhang, et al.,”CODA: Toward Automatically Identifying and

Scheduling Coflows in the Dark”, ACM SIGCOMM, 2016.

[37] Y. Li, et al.,”Efficient Online Coflow Routing and Scheduling”, ACM

MOBICHOC, 2016.

