In this assignment, you will work with the Peter Henderson’s “square-limit” graphics design language, which is described in Section 2.2.4 of the textbook. Before beginning work on this programming assignment, you should review that section. The goal of this problem set is to reinforce ideas about data abstraction and higher-order procedures, and to emphasize the expressive power that derives from appropriate primitives, means of combination, and means of abstraction.¹

Section 1 of this handout reviews the language, as presented in the text (mostly). You will need to study this in order to complete the exercises. Section 2 gives the lab assignment, which includes an optional design contest.

Turn in your assignment electronically on mercury using the following command:

```
submit holly 301-ps4 ps4.rkt
```

You should also turn in a hard copy of your file (including any hardcopy images) at the start of class on the due date.

Scheme Settings

Put the following statement at the beginning of your buffer:

```
#lang racket
(require (planet "sicp.ss" ("soegaard" "sicp.plt" 2 1)))
```

Evaluate the buffer (F5) and then wait 1 to 3 minutes while Racket pulls down the library and installs it. (Do not worry if you see things that look like errors during this process.) After that, just leave the require statement at the top of your code buffer.

¹This problem set was developed by Hal Abelson, based upon work by Peter Henderson (“Functional Geometry,” in Proc. ACM Conference on Lisp and Functional Programming, 1982). The image display code was designed and implemented by Daniel Coore. The adaption of the image display code to DrScheme was done by Michael Sperber, with small modifications and repackaging by Allyn Dimock. The problem set was downloaded from the MIT Press web site and modified by Holly Yanco, Allyn Dimock, and Fred Martin.
1. The Square-Limit Language

Remember that the key idea in the square-limit language is to use painter procedures that take frames as inputs and paint images that are scaled to fit the frames.

Basic data structures

Vectors are represented as pairs of numbers.

```
(define make-vect cons)
(define vector-xcor car)
(define vector-ycor cdr)
```

Here are the operations of vector addition, subtraction, and scaling a vector by a number:

```
(define (vector-add v1 v2)
  (make-vect (+ (vector-xcor v1) (vector-xcor v2))
            (+ (vector-ycor v1) (vector-ycor v2))))

(define (vector-sub v1 v2)
  (vector-add v1 (vector-scale -1 v2)))

(define (vector-scale x v)
  (make-vect (* x (vector-xcor v))
              (* x (vector-ycor v))))
```

A pair of vectors determines a directed line segment—the segment running from the endpoint of the first vector to the endpoint of the second vector:

```
(define make-segment cons)
(define segment-start car)
(define segment-end cdr)
```

Frames

A frame is represented by three vectors: an origin and two edge vectors.

```
(define (make-frame origin edge1 edge2)
  (list 'frame origin edge1 edge2))

(define frame-origin cadr)
(define frame-edge1 caddr)
(define frame-edge2 cadddr)
```

The frame’s origin is given as a vector with respect to the origin of the graphics-window coordinate system. The edge vectors specify the offsets of the corners of the frame from the origin of the frame. If the edges are perpendicular, the frame will be a rectangle; otherwise it will be a more general parallelogram. Figure 2.15 on page 135 of the textbook shows a frame and its associated vectors.

Each frame determines a system of “frame coordinates” \((x, y)\) where \((0, 0)\) is the origin of the frame, \(x\) represents the displacement along the first edge (as a fraction of the length of the edge) and \(y\) is the displacement along the second edge. For example, the origin of the frame has frame coordinates \((0, 0)\) and the vertex diagonally opposite the origin has frame coordinates \((1, 1)\).

Another way to express this idea is to say that each frame has an associated frame coordinate map that transforms the frame coordinates of a point into the Cartesian plane coordinates of the point. That is, \((x, y)\) gets mapped onto the Cartesian coordinates of the point given by the vector sum

\[
\text{Origin(Frame)} + x \cdot \text{Edge}_1(\text{Frame}) + y \cdot \text{Edge}_2(\text{Frame})
\]
We can represent the frame coordinate map by the following procedure:

\[
\text{(define (frame-coord-map frame)}
 \text{(lambda (point-in-frame-coords)}
 \text{(vector-add)}
 \text{(frame-origin frame)}
 \text{(vector-add (vector-scale (vector-xcor point-in-frame-coords)}
 \text{(frame-edge1 frame)})
 \text{(vector-scale (vector-ycor point-in-frame-coords)}
 \text{(frame-edge2 frame))}))
\]

For example, \((\text{(frame-coord-map a-frame) (make-vect 0 0)})\) will return the same value as \((\text{frame-origin a-frame})\).

The procedure \text{make-relative-frame} provides a convenient way to transform frames. Given a frame and three points \text{origin}, \text{corner1}, and \text{corner2} (expressed in frame coordinates), it returns a new frame with those corners:

\[
\text{(define (make-relative-frame origin corner1 corner2)}
 \text{(lambda (frame)}
 \text{(let ((m (frame-coord-map frame)}))}
 \text{(let ((new-origin (m origin)))}
 \text{(make-frame new-origin (vector-sub (m corner1) new-origin) (vector-sub (m corner2) new-origin))}))
\]

For example,

\[
\text{(make-relative-frame (make-vect 0.5 0.5) (make-vect 1 0.5) (make-vect 0.5 1))}
\]

returns the procedure that transforms a frame into the upper-right quarter of the frame.\(^2\)

Painters

As described in Section 2.2.4 of the textbook, a painter is a procedure that, given a frame as argument, “paints” a picture in the frame. That is to say, if \(p\) is a painter and \(f\) is a frame, then evaluating \((p f)\) will cause an image to appear in the frame. The image will be scaled and stretched to fit the frame.\(^3\)

The language you will be working with includes four ways to create primitive painters.

The simplest painters are created with \text{number->painter}, which takes a number as argument. These painters fill a frame with a solid shade of gray. The number specifies a gray level: 0 is black, 255 is white, and numbers in between are increasingly lighter shades of gray. Here are some examples:

\[
\text{(define black (number->painter 0))}
\text{(define white (number->painter 255))}
\text{(define gray (number->painter 150))}
\]

You can also specify a painter using \text{procedure->painter}, which takes a procedure as argument. The procedure determines a gray level (0 to 255) as a function of \((x, y)\) position, for example:

\[
\text{(define diagonal-shading}
 \text{(procedure->painter (lambda (x y) (* 100 (+ x y))))})
\]

The \(x\) and \(y\) coordinates run from 0 to 1 and specify the fraction that each point is offset from the frame’s origin along the frame’s edges. (See Figure 2.15 in the textbook.) Thus, the frame is filled out by the set of points \((x, y)\) such that \(0 \leq x \leq 1\) and \(0 \leq y \leq 1\). (The DrScheme version has some rounding error that causes range of displayable points \((x, y)\) to be in the range \(0 \leq x < 1\) and \(0 \leq y < 1\) in the outermost frame. Any point that is mapped to within a pixel of 1 in the outermost frame is not displayed.)

\(^2\) Actually into the corner of a frame farthest from the frame’s origin: thus to the upper-right if the frame’s origin is in the lower-left.

\(^3\) Actually, painting a picture requires some extra administrative work. Always use \text{paint} to paint a picture.
Figure 1: Examples of primitive painters: \texttt{mark-of-zorro} and \texttt{einstein}.

A third kind of painter is created by \texttt{segments->painter}, which takes a list of line segments as argument. This paints the line drawing specified by the list segments. The (x,y) coordinates of the line segments are specified as above. For example, you can make the “Z” shape shown in Figure ?? as

\begin{verbatim}
(define mark-of-zorro
 (let ((v1 (make-vect .1 .9))
 (v2 (make-vect .8 .9))
 (v3 (make-vect .1 .2))
 (v4 (make-vect .9 .3)))
 (segments->painter
 (list (make-segment v1 v2)
 (make-segment v2 v3)
 (make-segment v3 v4)))))
\end{verbatim}

The final way to create a primitive painter is from a stored image. The procedure \texttt{load-painter} loads a GIF or JPG image from disk. For example:

\begin{verbatim}
(define bonsai (load-painter “/Users/holly/Documents/301/ps4/bonsai.gif”))
\end{verbatim}

will create a painter that will display an image of a bonsai tree (provided the gif exists in the given directory, of course).

Make sure to give the full path to the file on your disk, or, put the file in the same directory as the PLT-Scheme binaries and then no path is needed.

There are also painters defined in the code for the problem set:

\begin{verbatim}
(paint einstein)
\end{verbatim}

will paint an image of Albert Einstein.

\textbf{Transforming and combining painters}

We can transform a painter to produce a new painter which, when given a frame, calls the original painter on the transformed frame. For example, if \texttt{p} is a painter and \texttt{f} is a frame, then

\begin{verbatim}
(p ((make-frame-relative (make-vect 0.5 0.5) (make-vect 1 0.5)
 (make-vect 0.5 1))
 f))
\end{verbatim}

will paint in the corner of the frame farthest from the origin.

We can abstract this idea with the following procedure:
(define (transform-painter origin corner1 corner2)
 (lambda (painter)
 (compose painter
 (make-relative-frame origin corner1 corner2))))

Note: The definition of transform-painter differs from the one in the book on page 138. Look at the definition of the procedure in the book and the one listed above. Convince yourself that they do the same thing.

Calling transform-painter with an origin and two corners, returns a procedure that transforms a painter into one that paints relative to a new frame with the specified origin and corners. For example, we could define:

(define (shrink-to-upper-right painter)
 ((transform-painter (make-vect 0.5 0.5) (make-vect 1 0.5) (make-vect 0.5 1))
 painter))

Note that this can be written equivalently as

(define shrink-to-upper-right
 (transform-painter (make-vect 0.5 0.5) (make-vect 1 0.5) (make-vect 0.5 1)))

Other transformed frames will flip images horizontally:

(define flip-horiz
 (transform-painter (make-vect 1 0)
 (make-vect 0 0)
 (make-vect 1 1)))

or rotate images counterclockwise by 90 degrees:

(define rotate90
 (transform-painter (make-vect 1 0)
 (make-vect 1 1)
 (make-vect 0 0)))

By repeating rotations, we can create painters whose images are rotated through 180 or 270 degrees:

(define rotate180 (repeated rotate90 2))
(define rotate270 (repeated rotate90 3))

We can combine the results of two painters a single frame by calling each painter on the frame:

(define (superpose painter1 painter2)
 (lambda (frame)
 (painter1 frame)
 (painter2 frame)))

The effect is only interesting if the second painter has some transparent areas where the first painter can show through.

To draw one image beside another, we combine one in the left half of the frame with one in the right half of the frame:

(define (beside painter1 painter2)
 (let ((split-point (make-vect .5 0)))
 (superpose
 ((transform-painter zero-vector
 split-point
 (make-vect 0 1))
 painter1)
 ((transform-painter split-point
 (make-vect 1 0)
 (make-vect .5 1))
 painter2)))))

We can also define painters that combine painters vertically, by using rotate together with beside. The painter produced by below shows the image for painter1 below the image for painter2:

(define (below painter1 painter2)
 (rotate270 (beside (rotate90 painter2)
 (rotate90 painter1))))
2. Exercises

#lang racket
(require (planet "sicp.ss" ("soegaard" "sicp.plt" 2 1)))

To paint a picture, use the procedure `paint`; e.g.:

(paint einstein)

You can print out your work with File:Print Interactions.

Exercise 1 Describe the patterns drawn by

(procedure->painter (lambda (x y) (* x y)))
(procedure->painter (lambda (x y) (* 255 x y)))
(procedure->painter (lambda (x y) (* 255 y)))

Try answering this problem without typing in the code. To check your answer, you could type

(paint (procedure->painter (lambda (x y) (* x y))))

Exercise 2 Describe the effect of

(transform-painter (make-vect 0 .5)
 (make-vect .5 1)
 (make-vect .1 0))

Try this on paper first, before checking what the system does.

Exercise 3 Make a collection of primitive painters to use in the rest of this lab. In addition to the ones predefined for you (and listed in section 1), define at least one new painter of each of the four primitive types: a uniform grey level made with `number->painter`, something defined with `procedure->painter`, a line-drawing made with `segments->painter`, and an image of your choice.

Turn in a list of your definitions: `my-number-painter`, `my-procedure-painter`, `my-segments-painter`, `my-image-painter`. Include your GIF file(s) in your electronic submission.

Exercise 4 Experiment with some combinations of your primitive painters, using `beside`, `below`, `superpose`, flips, and rotations, to get a feel for how these means of combination work. You needn’t turn in anything for this exercise.

Exercise 5 The “diamond” of a frame is defined to be the smaller frame created by joining the midpoints of the original frame’s sides. Define a procedure `diamond` that transforms a painter into one that paints its image in the diamond of the specified frame, as shown in Figure ???. Try some examples, and turn in a listing of your procedure.

Exercise 6 The “diamond” transformation has the property that, if you start with a square frame, the diamond frame is still square (although rotated). Define a procedure `make-non-square-diamond` which takes 3 parameters: the first is the y coordinate of the origin (the x coordinate of the origin will always be 0); the second is the x coordinate of edge1 (y will always be 0); and the third is the x coordinate of edge2 (y will always be 1).

Use your procedure `make-non-square-diamond` to define `non-square-diamond-1` with the first parameter equal to 0.2, the second equal to 0.1 and the third equal to 0.9. Write at least one other transform that uses `make-non-square-diamond` to define it. Try your transformation(s) on some images to get some nice effects. Turn in a listing of your procedures.
Exercise 7 The following recursive right-split procedure was demonstrated in lecture:

\[
\text{(define (right-split painter n)}
\begin{align*}
& \quad \text{(if (= n 0)} \\
& \qquad \quad \text{painter} \\
& \qquad \quad \text{(let ((smaller (right-split painter (- n 1)))))} \\
& \qquad \quad \text{(beside painter (below smaller smaller))))}
\end{align*}
\]

Try this with some of the painters you’ve previously defined, both primitives and combined ones. Now define an analogous up-split procedure as shown in Figure ?? . Make sure to test it on a variety of painters. Turn in a listing of your procedure. (In defining your procedure, remember that (below painter1 painter2) produces painter1 below painter2.)

Exercise 8 Right-split and up-split are both examples of a common pattern that begins with a means of combining two painters and applies this over and over in a recursive pattern. We can capture this idea in a procedure called keep-combining, which takes as argument a combiner (which combines two painters). For instance, we should be able to give an alternative definition of right-split as

\[
\text{(define new-right-split} \\
\text{(keep-combining} \\
\text{(lambda (p1 p2)} \\
\text{(beside p1 (below p2 p2)))))}
\]
Complete the following definition of keep-combining:

```
(define (keep-combining combine-2)
  ;; combine-2 = (lambda (painter1 painter2) ...)
  (lambda (painter n)
    ((repeated
      ;; fill in missing expression
      n)
     painter)))
```

Show that you can indeed define right-split using your procedure, and give an analogous definition of up-split. Name your new procedures right-split2 and up-split2.

Exercise 9 Once you have keep-combining, you can use it to define lots of recursive means of combination. Here are three examples:

```
(define nest-diamonds
  (keep-combining
   (lambda (p1 p2) (superpose p1 (diamond p2))))))

(nest-diamonds diagonal-shading 4)

(define new-comb
  (keep-combining
   (lambda (p1 p2)
    (square-limit (below p1 p2) 2))))

(new-comb mark-of-zorro 1)

(define mix-with-einstein
  (keep-combining
   (lambda (p1 p2)
    (below (beside p1 einstein)
          (beside p2 p2))))))

(mix-with-einstein logo 3)
```

Invent some variations of your own. Turn in the code: procedure painter-9a, optionally painter-9b, ...

Exercise 10 The procedures you have implemented give you a wide choice of things to experiment with. Invent some new means of combination, both simple ones like beside and complex higher-order ones like keep-combining and square-limit, and see what kinds of interesting images you can create. Turn in the code of painters for one or two images: procedure painter-10a, optionally painter-10b, ...

Contest (Optional) Hopefully, you generated some interesting designs in doing this assignment. If you wish, you can enter printouts of your best designs in the 91.301 design contest. Turn in your design collection together with your homework, but stapled separately, and make sure your name is on the work. For each design, show the expression you used to generate it. Designs will be judged by the OPL staff and other paragons of design expertise, and fabulous prizes will be awarded in lecture. There is a limit of five entries per student. Make sure to turn in not only the pictures, but also the procedure(s) that generated them.