Introduction to localization and mapping for robots

COMP 4500 Mobile Robotics I
Prof. Yanco
Spring 2018
Three Types of Robot Architectures

Hierarchical

Reactive

Hybrid

From Murphy 2000
Minerva’s Architecture Diagram

User Interface

Task Planner

Map Builder

Localization

Path Planner

Collision Avoidance
Robot localization example
Multi-Robot Mapping and Exploration

Carnegie Mellon
October 1999
Mapping Mines
Closing loops

From https://blog.cometlabs.io/teaching-robots-presence-what-you-need-to-know-about-slam-9bf0ca037553
Google Gar/Waymo
Navlab, CMU, 1997
The SLAM Problem

A robot is exploring an unknown, static environment.

Given:

- The robot’s controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot
Structure of the Landmark-based SLAM-Problem
SLAM Applications

Indoors

Space

Undersea

Underground
Representations

• Grid maps or scans

[Lu & Milios, 97; Gutmann, 98; Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99; Dissanayake et al., 2001; Montemerlo et al., 2002;…]
Why is SLAM a hard problem?

SLAM: robot path and map are both *unknown*

Robot path error correlates errors in the map
Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown.
- Picking wrong data associations can have catastrophic consequences.
- Pose error correlates data associations.
SLAM:
Simultaneous Localization and Mapping

• Full SLAM: Estimates entire path and map!

\[p(x_{1:t}, m | z_{1:t}, u_{1:t}) \]

• Online SLAM: Integrations typically done one at a time

\[p(x_t, m | z_{1:t}, u_{1:t}) = \int \int \ldots \int p(x_{1:t}, m | z_{1:t}, u_{1:t}) \, dx_1 \, dx_2 \ldots dx_{t-1} \]

Estimates most recent pose and map!
Graphical Model of Online SLAM:

\[p(x_t, m | z_{1:t}, u_{1:t}) = \int \int \cdots \int p(x_{1:t}, m | z_{1:t}, u_{1:t}) \, dx_1 \, dx_2 \cdots dx_{t-1} \]
Graphical Model of Full SLAM:

\[p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \]
Want to learn more?

• Sign up for COMP 4510