Contact Information
Prof. Holly Yanco
Office: Olsen 206
Lab: Olsen 304
E-mail: holly@cs.uml.edu
Phone: 978-934-3642

Class Meetings
Lecture: Tuesdays, 1:00 – 2:15, Olsen 415
Lab: Thursdays, 1:00 – 3:00, Olsen 304

Office Hours
Office hours for the course will be held in the lab (Olsen 304) to allow us to work with the robots. I will be in the lab during the following hours.

Tuesdays 2:30 to 3:30
Wednesdays 1:00 to 2:30
Thursdays 3:00 to 4:00

You may also make an appointment with me if you can not make it to the scheduled office hours.

Course Description
In this course, you will learn about autonomous mobile robots and artificial intelligence. There will be lectures on Tuesdays (held in Olsen 415) and labs on Thursdays (held in Olsen 304). The robots will be programmed in Pyro, which stands for Python robots. The language abstracts the underlying robot control language, allowing you to write code that will run on different types of robots and robot simulators. We will primarily use the Pioneer 2DXE robot platform and its simulator.

The focus of the course will be AI Robotics. We will learn about vision, planning and mapping, machine learning, and multi-agent robotics. The topics learned in lecture will be followed by a lab on that subject.

Project Sequence
This course together with Robotics I in the fall is a project sequence.

Textbook
Introduction to AI Robotics, Robin Murphy, MIT Press, 2000

While the Murphy book will be the primary text for the course, there will be additional photocopied readings distributed.
Class Website
 http://www.cs.uml.edu/~holly/91.451

Exam Dates
 Midterm: Tuesday, 23 March, in class
 Final Exam: To be determined by the Registrar

Projects
 A great deal of the programming in this class will occur as part of the labs. There will be a final project for the class. You will pick your topic around the time of the midterm. The project will be due during the last week of classes. On the last day of classes, you will give a presentation about your project with a live demo. Since we do not have a robot for every person, the demos will run serially.

Grading
 Homework and Labs 30%
 Midterm Exam 20%
 Final Project 30%
 Final Exam 20%

Collaboration Policy
 Most labs and homework will be done alone. Unless a lab or homework assignment is designated as a group assignment, you must do your own work, not collaborate with another person. You can talk to others about the assignment, but you must write all code and other documentation by yourself. Exams are also to be an individual proposition.

Robots
 In the lab, you’ll be programming robots. We will be using ActivMedia’s Pioneer-2DXE as the platform. This wheeled robot has a color camera with pan-tilt zoom, 16 sonar sensors (8 front and 8 back), a back bumper and a gripper.

Lab
 The lab is in Olsen 304. The door has an id lock, so you will have 24 hour access to the lab. You must enter with your id.

Please try to keep your workspace and the lab neat. If I see a mess from food or drink, I will be forced to ban them from the lab.
Getting More Involved with Robotics

Botball and Botfest

Botball and Botfest will kick off February 6 – 8 with a tutorial on campus. The tournament and exhibition will be held on Saturday, March 27. Volunteers are needed at the tutorials, to mentor teams, and to help on March 27. Talk to me if you are interested.

Reading Group

Fred and I lead the Robotics and Learning reading group, which will be scheduled shortly. If you are interested in reading and discussing papers on current research in robotics, sign up for the robotics-reading-group mailing list on weblab (or talk to me).

Trinity Firefighting Competition

The Trinity Firefighting Competition will be held at Trinity College in Hartford, Connecticut on Saturday, April 17 and Sunday, April 18. If you are interested in building a robot for the competition, I can cover your registration costs. Unfortunately, robots built for Trinity can not count for credit in this course, since we are focusing on AI and Robotics using the Pioneers.