Perception for visualization: From design to evaluation

Course instructor
Haim Levkowitz
Institute for Visualization and Perception Research
Department of Computer Science
University of Massachusetts at Lowell
Lowell, MA 01854
Tel.: 978-934-3654; Fax: 978-934-3551
haim@cs.uml.edu, http://www.cs.uml.edu/~haim/

Length
Full day

Level
Intermediate

Goals
To understand perception and its implications on visualization, from front-end design to final efficacy evaluation.

Abstract
What is the smallest sample I can show that will be perceived? What is the smallest sample I can show that will be perceived in color? Can I afford using image compression? If yes, how much and what kind? Should I use a grayscale or another color scale? How many gray levels do I absolutely need? What color scale should I use? How many bits for color do I need to have? Should I use 3D, stereo, texture, motion? If so what kinds? and Has my visualization been successful meeting its goals and needs?

If you have ever designed a visualization, you probably have asked yourself (perhaps others) some of these questions; at least you should have.

Since visualization “consumers” are humans, the answers to these questions can only come from a thorough analysis and understanding of human perceptual capabilities and limitations, combined with the visualization's goals and needs.

This tutorial will teach you the basics of human perception and how to utilize them in the complete process of visualization: from design to evaluation.

Who should attend?
Anyone engaged in the design, implementation, and evaluation of visualizations.
What will you gain?
Understanding of the complete process of visualization, from design to evaluation, and how to incorporate perception into the process to maximize the visualizations impact and results.

Course Organizer and Instructor
Haim Levkowitz is an Associate Professor of Computer Science and Co-Director of the Institute for Visualization and Perception Research at the University of Massachusetts Lowell, in Lowell, MA. Since 1982, he has been studying the mathematical and computer science aspects of multidimensional, multiparametric imaging and visualization. Since 1985, his research efforts have concentrated on the development of methods for multiparametric representation and presentation of information. He has developed new color methods for computer graphics representation of parameter distributions. He is the developer of the Generalized Lightness, Hue, and Saturation (GLHS) family of color models, the Linearized Optimal Color Scale (LOCS), and the Color Icon. He has also developed and implemented tools for automated psychometric evaluation of the developed display methods, and has used these tools to conduct observer performance evaluations of some of his methods. Dr. Levkowitz has published and presented extensively on color and texture in graphics and visualization, and has taught many tutorials on perception and visualization.

Contents and Schedule

Introduction (30 Minutes)
 Motivation and goals
 Outline

The human visual system (1 hour)
 Physical stimulus and perceptual response
 Anatomy of the eye
 Accommodation
 Eye and brain
 Basic vision: fundamental visual functions
 Scotopic and photopic vision
 Adaptation
 Limits
 Acuity
 Eye movements
 Color vision and perception
 Color matching
 Color mixture
 Color perception and modeling
 Color deficiencies

Perception: Selected topics (1 hour)
 Form and shape perception
 Space and depth perception
 Texture
 Motion perception
 Sound perception

Cognitive issues in visual perception (1 hour)
 Illusions (geometrical and otherwise)
 Perceptual grouping
 Feature extraction and texture segmentation
 Visual attention

From theory to implementation
 Human perception and image generation and understanding (1 hour)
 Evaluation (1 hour)
 Is it really necessary?
 Study design
 Study execution
 Analysis and interpretation
 Example/case study

Discussion, questions, examples, and demonstrations (30 minutes)
Bibliography