Enterprise WLAN Architecture

Steve Acker
Wireless Network Consulting Engineer
CCIE #14097
CISSP #86844
Wireless LAN Mobility Services

Security
- Automatic, 24 x 7 security and compliance monitoring for breaches via wireless medium
- Network access control based on user location

Guest
- Guest networks for customers, partners and auditors
- Vendor replenishment networks
- Public access networks

Voice
- Real-time mobile voice communications
- Improved collaboration via mobile unified communications
- Faster customer service response

Location
- Asset management
- Location-based content distribution
- Streamlined workflow using historical location data

Pervasive Wireless Network
Understanding WLAN Controllers—1st/2nd Generation vs. 3rd Generation Approach

- 1st/2nd generation—APs act as 802.1Q translational bridge, putting client traffic on local VLANs
- 3rd generation—Controller bridges client traffic centrally
Components of Centralized Architecture

- **WLC**

 Cisco Unified Wireless LAN controllers aggregate WLAN client traffic and control the Wireless network

- **APs**

 Lightweight access points are used in all unified wireless architectures and provides client wireless access, and tunneling to the WLC.

- **WCS**

 Cisco Wireless Control System provides centralized management, RF planning and visualization tools, and location services
Centralized Wireless LAN Architecture

Overview

- Processing split between APs and controllers
 - 802.11 functionality shared
- Central management—AP is essentially a remote RF interface
- Based on LWAPP protocol
- APs hold no security credentials
- APs unusable without a controller—Just expensive paperweights!
- Data traffic can be bridged locally or at controller
Central Switching VS Local Switching

- Hybrid REAP
- Devices that require local connectivity
- Normal LWAPP/CAPWAP Data Flow
- Central switching of all other traffic

Hybrid REAP

Locally Switched

Centrally Switched

Data VLAN

Management VLAN

Voice VLAN

Local VLAN
Centralized Wireless LAN Architecture
What Is LWAPP?

- LWAPP—Light weight access point protocol is used between APs and WLAN controller
- LWAPP carries control and data traffic between the two
 - Control plane is AES-CCM encrypted
 - Data plane is not encrypted
- It facilitates centralized management and automated configuration
- Open, standards-based protocol (submitted to IETF CAPWAP WG)
The LWAPP Join
State Machine (Simplified)

- LWAPP defines a state machine that governs the AP and controller behavior
- Major states:
 - Discovery—AP looks for a controller
 - Join—AP attempts to establish a secured relationship with a controller
 - Image Data—AP downloads code from controller
 - Config—AP receives configuration from controller
 - Run—AP and controller operate normally and service data
 - Reset—AP clears state and starts over
- Note: LWAPP/CAPWAP RFC defines other states
Layer-3 LWAPP WLAN Controller Discovery

- AP performs **all** these mechanisms to compile a list of WLAN controllers:
 1. LWAPP Discovery broadcast on local subnet
 2. Over-the-Air Provisioning (OTAP)
 3. Locally stored controller IP addresses
 4. DHCP vendor specific option 43 (IP Address should be “Management Interface” IP)
 5. DNS resolution of “CISCO-LWAPP-CONTROLLER.localdomain” (should resolve to the “Management Interface” IP)
 6. If no controller found, start over…

- AP compiles a list of candidate controllers from the received LWAPP Discovery Responses
WLAN Controller Selection Algorithm

- LWAPP Discovery Response contains important information from the WLAN Controller:

 Controller `sysName`, controller type, controller AP capacity, current AP load, “Master Controller” status, AP Manager IP address(es) and number of APs joined to the AP Manager

- AP selects a controller to join using the following decision criteria to pick a controller from candidate list:

 1. Primary, secondary, and/or tertiary controller—configured on AP, specified by the Controller `sysName`
 2. Join “Master” controller
 3. Controller with the greatest excess AP capacity
WLAN Controller Join Process
Mutual Authentication

- AP’s LWAPP join request the AP’s signed X.509 certificate
- WLAN controller validates the certificate before sending an LWAPP join response

 Manufacture installed certificate (MIC)—Cisco 1000 Series, all Cisco Aironet APs manufactured after July 18, 2005

 Self-signed certificate (SSC)—LWAPP upgraded Cisco Aironet APs manufactured prior to July 18, 2005

 SSC APs must be “authorized” on the WLAN controller

- If AP is validated, the WLAN controller sends the LWAPP join response which contains the controller’s signed X.509 certificate
Configuration Phase
Firmware and Configuration Download

- Firmware is downloaded by the AP from the WLC
 - Firmware downloaded only if needed, AP reboots after the download
 - Firmware digitally signed by Cisco

- Network configuration is downloaded by the AP from the WLC
 - Configuration is encrypted in the LWAPP tunnel (control plane)
 - Configuration is applied
Mobility Defined

- **Mobility** is the “killer app” for WLANs
- Mobility—end-user device is portable but still capable of being connected to networked resources
- **Roaming** occurs when a wireless client moves association from one AP and re-associates to another
- Mobility/roaming presents new challenges:
 - Architecture must scale to support client roaming
 - Client roaming must be fast and preserve security, QoS, etc.
How Clients Connect

- AP handles real-time 802.11 control and management
- Non-real time 802.11 handled at controller—including association/re-association
- Controller is the 802.1x authenticator
- Controller centrally stores client QoS, security context
- 802.11 data frames are encrypted/decrypted at the RF interface
- “Action frames” are management frames as defined by 802.11
Scaling the Architecture with Mobility Groups

- Controllers “peer” to support seamless campus roaming
- APs learn the IPs of the other members of the mobility group after the LWAPP Join process
- Support for up to 24 controllers, 3600 APs per mobility group
- Mobility messages exchanged between controllers
- Data tunneled between controllers in EtherIP (RFC 3378)
Intra-Controller Roaming

- Intra-controller roam happens when an AP moves association between APs joined to the same controller.
- Client must be re-authenticated and new security session established.
- Controller updates client database entry with new AP and appropriate security context.
- No IP address refresh needed.
Layer-3 Roaming—Inter-Controller

- L3 inter-controller roam happens when an AP moves association between APs joined to the different controllers but client traffic bridged onto different subnet

- Client must be re-authenticated and new security session established
- Client database entry copied to new controller
- Original controller tagged as the “anchor”
- New controller tagged as the “foreign”
- No IP address refresh needed
- Asymmetric traffic path established
Layer-3 Roaming—Symmetric Mobility (4.1)

- Foreign controllers will send Layer 3 roaming client’s packet back to its anchor controller through EtherIP tunneling
- Source IP address of the packet will be the foreign controller’s management IP address
- Upstream routers that have Reverse Path Forwarding (RPF) will forward on packets
- Configurable option in software release 4.1
Roaming Requirements

- Roaming must be fast… Latency can be introduced by:
 - Client channel scanning and AP selection algorithms
 - Re-authentication of client device and re-keying
 - Refreshing of IP address

- Roaming must maintain security
 - Open auth, static WEP – Session continues on new AP
 - WPA/WPAv2 personal – New session key for encryption derived via standard handshakes
 - 802.1x, 802.11i, WPA/WPAv2 enterprise – Client must be re-authenticated and new session key derived for encryption
Fast Secure Roaming

- Client channel scanning and AP selection algorithms—**Improved via CCX features**
- Refreshing of IP address—**Irrelevant in controller-based architecture**!
- Re-authentication of client device and re-keying

 Cisco centralized key management (CCKM)

 Proactive key caching (PKC)
Supporting Roaming—Design Best Practices and Caveats

- Minimize inter-controller roaming in your designs
- Design the network for ≤ 10 msec RTT latency between controllers
- Layer-3 roaming—consider the effects of things like RPF and stateful security features in your designs
- Use PKC and/or CCKM to speed up and secure roaming
- Client roaming behavior—mileage varies by vendor, driver, supplicant. Look for CCXv4 feature-set
QoS Overview

- Ensures packets receive the proper QoS handling end-to-end
- Makes sure packet will maintain QoS information as it traverses network
- Policing of 802.11e UP / 802.1p and IP DSCP values ensures end-points conform to network QoS policies
- Uses Cisco’s AVVID packet marking mappings and IEEE mappings as appropriate
- Support for Cisco 7920/7921 and Spectalink phones
WMM Overview

- WMM is a Wi-Fi Alliance interoperability certification, based on the IEEE 802.11e standard.
- WMM prioritizes traffic according to four Access Categories (AC) - voice, video, best effort, and background.
- WMM does not provide guaranteed throughput.
- When you enable QoS, the access point uses Wi-Fi Multimedia (WMM) mode by default.
- The access point adds each packet's class of service to the packet's 802.11 header to be passed to the receiving station.
Quality of Service (QoS) Configurable Profiles

Each Level Has a Configurable per Bandwidth Contract Rate

- Per-user data bandwidth contract – configurable peak and average data rate enforced in the Network Processing Unit (NPU) for non-UDP traffic
- Per-user real-time bandwidth contract – configurable peak and average data rate enforced in the NPU for UDP traffic
802.1p tag is applied to wired side to allow proper precedence to be applied to traffic across entire network infrastructure.
WLANs > Edit

QoS Options
- Platinum (voice)
- Gold (video)
- Silver (best effort)
- Bronze (background)

WMM Options
- Disabled
- Allowed
- Required
VoIP Phone Support

Configuration Commands Available from the Command Line

To view Dot11-Phone Mode configuration

(Cisco Controller) >show wlan 2

WLAN Identifier............................ 2
Network Name (SSID)........................... WLAN2
Status... Enabled

Quality of Service............................ Platinum (voice)
WMM.. Required
802.11e.. Disabled
Dot11-Phone Mode (7920)....................... ap-cac-limit
Wired Protocol.................................. None
IPv6 Support.................................... Disabled
Radio Policy................................... 802.11B and 802.1G only
Security
 802.11 Authentication:...................... Open System
 Static WEP Keys............................. enabled
 Key Index:.................................. 1
 Encryption:................................ 104-bit WEP
Cisco Compatible Extensions
The Standard for Client Advancement

Over 90% of Client Devices Cisco Compatible

Client Devices

Features
- Assured compatibility with 400+ devices
- Standards-based
- Enhanced security, mobility, and performance
- Supports Mobility Services i.e., Location, voice

Benefits
- Accelerates innovation
- Supports diverse enterprise applications
- Ensures multi-vendor interoperability
- Enables simplified deployment of mobile WLAN clients

http://www.cisco.com/go/ciscocompatible/wireless
Single Client for Uniform Security and Services

- **Key Features:**
 - 802.1X authentication for wired and wireless devices
 - Windows XP/2000 support

- **EAP:**
 - EAP-FAST, EAP-MD5, PEAP-MSCHAP, PEAP-GTC, EAP-TLS, EAP-TTLS, Cisco LEAP

- **Encryption:**
 - WEP, Dynamic WEP, TKIP, AES

- **Standards:**
 - WPA and WPA2

Cisco Secure Services Client

Features
- Unified wired and wireless client
- Support for industry standards
- Endpoint integrity
- Single sign-on capable
- Enabling of group policies
- Administrative control

Benefits
- Reduces client software
- Simple, secure device connectivity
- Minimizes chances of network compromise from infected devices
- Reduces complexity
- Restricts unauthorized network access
- Centralized provisioning
Cisco Wireless Controller Family

- Cisco 2106: 6 APs
- Cisco 3750: 25 APs
- Cisco 4402-25: 25 APs
- Cisco 4402-12: 12 APs
- Cisco 4402-50: 50 APs
- Cisco 4404: 100 APs
- H-REAP: 6 APs
- Cisco 3750: 50 APs
- Cisco 4402-50: 50 APs
- Cisco WiSM: 300 APs
- And the NEW Cisco 5508

Deployment Size:

- >=2-6 APs
- >=12 APs
- >=25 APs
- >=50 APs
- >=100 APs
- <300 APs
Cisco Wireless Control System (WCS)

World-Class Network Management

Features
- Client troubleshooting (via CCX)
- Planning, configuration, monitoring, location, IDS/IPS, and troubleshooting
- Hierarchical maps
- Intuitive GUI and templates
- Policy based networking (QoS, security, RRM, etc.)

Benefits
- Lower OPEX and CAPEX
- Better visibility and control of the air space
- Consolidate functionality into a single management system
- Determines location and voice readiness