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ABSTRACT

This paper presents WOAH, a method for real-time mobile robot path following and obstacle avoidance. WOAH
provides reactive speed and turn instructions based on obstacle information sensed by a laser range finder. Unlike
many previous techniques, this method allows a robot to move quickly past obstacles that are not directly in its
path, avoiding slowdowns in path following encountered by previous obstacle avoidance techniques.
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1. INTRODUCTION

Consider the problem of a robot autonomously driving to a goal point on flat terrain. Assume the robot always
knows its position and what direction it’s facing. If there are no obstacles, this is simple: the robot can just
drive towards the goal until it gets there. When obstacles are added, this technique must be modified slightly.
As long as none of the obstacles form traps, or configurations where the robot would need to move away from
the goal in order to get there, it is sufficient for the robot to simply drive in the direction that will allow it to
make the most progress towards the goal without hitting any obstacles.

Eliminating traps is a well understood problem. The combination of a mapping and pathfinding technique,
such as an occupancy grid and A* search,1 can be used to create a sequence of intermediate waypoints such that
no traps exist between adjacent waypoints. Once such a path has been generated, the problem of reaching the
goal has been reduced to the problem of traveling to the next waypoint.

In order to solve this problem, we have developed WOAH, a Working Obstacle Avoidance Heuristic. WOAH
determines, based on instantaneous sensor readings, a direction the robot should turn, how rapid the turn
should be, and how quickly the robot can safely move forward. In this paper, we present the algorithm behind
WOAH and show that WOAH provides excellent performance compared to previous techniques for a four wheeled
differential drive robot with one forward mounted LIDAR scanner .

1.1 Inspiration

The development of WOAH was inspired by the AUVSI Intelligent Ground Vehicles Competition Navigation
Challenge. In this challenge, a competing robot must navigate autonomously through an unknown set of static
obstacles to nine GPS waypoints on a 55 by 65 meter course. Whichever robot hits the most waypoints the
fastest wins.

In the 2009 IGVC competition we used Nearness Diagram2 for obstacle avoidance. This worked reasonably
well, but for the 2010 competition we wanted better performance. After evaluating various options, we concluded
that the existing solutions were too timid to provide the performance that we wanted. An early version of the
algorithm we present in this paper was used on our two entries at the 2010 IGVC, achieving 3rd and 11th place
in a field of 22.
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2. RELATED WORK

2.1 Vector Field Histogram (VFH)

One approach to robot obstacle avoidance that appears relatively early in the literature is the use of potential
fields. The idea is that if you sum a field that pulls the robot towards its goal with fields that push it away from
obstacles, the result will be a direction that the robot can move to reach the goal without hitting anything. This
approach is well represented by the Vector Field Histogram (VFH)3 family of algorithms, of which VFH+4 is a
modern example.

This approach has two basic weaknesses. First, the combination of fields can produce local minima where
the force from the goal is exactly balanced by the forces from obstacles, which will cause the robot to get stuck.
Second, the nature of the technique will cause the robot to veer away from obstacles even when there is no risk
of collision, which will result in the robot taking sub-optimal paths. Both of these weaknesses can be worked
around to some extent by properly selecting configuration constants, but finding a set of constants that will work
well in general is difficult.

2.2 Nearness Diagram (ND)

Nearness Diagram2 (ND) is an approach to obstacle avoidance that was developed to provide better performance
in cluttered environments, where other methods like potential fields tend to run into problems. ND operates
by dividing the situations it expects to encounter into five specific cases and providing appropriate behavior for
each of these cases. This results in reasonable performance in a variety of different situations, including narrow
corridors and cluttered areas. Smooth Nearness Diagram, or SND, is a newer development based on ND designed
to produce less jerky movement. SND has been simplified from its predecessors to operate on a single law of
motion as well as a single non-physical configuration parameter.

2.3 Open Path

Open Path5 is a procedure for processing laser range data to find directions that are open paths for the robot
to travel along. The robot then moves in the direction with the largest open area. This algorithm is not a path
following solution as described, but the analysis of LIDAR data is very similar to what is described in this paper
such that many of the optimization techniques used in Open Path should be directly applicable to WOAH.

2.4 Search-based Approaches

For high budget projects where more complicated sensor packages are a feasible option, a common approach is to
solve obstacle avoidance by treating finding the best local path as a search problem. For example, the Carnegie
Mellon University entries in the DARPA Grand Challenge6 ran A* search at 20Hz on a set of probable local
paths. This technique required multiple LIDAR units and a dedicated processor to run the search, which puts
it well out of the budget range of many projects.

3. DESCRIPTION

3.1 How WOAH Works

WOAH operates reactively to calculate instantaneous speed and turn rate given the current available sensor
readings. The intent is to select the speed and turn rate that will cause the robot to make the fastest progress
towards the goal point without hitting anything. WOAH consists of a mathematical function mapping sensor
inputs and desired location to appropriate the forward and rotation speeds, as shown in the Scheme code below.
This procedure is run frequently, ten times per second in our testing, and the resulting forward and rotation
speeds are used to calculate the motor commands to be applied until the next iteration.

First, WOAH makes sure the robot is facing generally towards the next waypoint. In order to make progress
towards the waypoint, the angle to the goal must be less than 90 degrees. If the angle is greater than that, the
robot will turn in place towards the waypoint.

If the robot is facing within 90 degrees of the next waypoint, the next step is to find the direction that will
allow the robot to make the most rapid progress towards that goal. WOAH finds this direction by searching the



space scanned by the LIDAR for the best open corridor. A corridor is a rectangle projecting from the front of
the robot that is wide enough for the robot to safely travel along (the width of the robot plus a safety margin,
as illustrated in Figure 1). WOAH considers each corridor distinguishable by the LIDAR: one for each LIDAR
sample, except for those samples too close to the edge of the LIDAR arc to be the center of a full corridor. For
each corridor, the amount of progress that can be made along that corridor is calculated by finding the nearest
LIDAR reading in that corridor.

To find the nearest LIDAR reading in a corridor, we take the minimum of readings that fall within the
corridor. There are three possibilities for each ray:

1. The ray is within the corridor rectangle for its entire range. In this case this sample is always a candidate
for nearest reading.

2. The ray exits the rectangle on the left. In this case the sample is only a candidate for nearest reading if it
occurs before the ray exits the rectangle.

3. The ray exits the rectangle on the right. This is symmetric with case 2.

The following formula will calculate the intersection distance d(w, α, θ) in all three cases. The arguments to this
function are the width of the corridor (w), the angle of the center of the corridor (α), and the angle of the laser
ray (θ). If the ray exits the rectangle on either side, this gives the appropriate distance. If it does not exit the
rectangle, it will give a very large positive value. This means that any sample distances greater than d(w, α, θ)
do not occur within the corridor.

d(w, α, θ) =
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Figure 1. Geometry of a Corridor.

Given the length of a clear corridor in front of the robot, the possible progress that can be made by following
that corridor can be calculated by comparing the current distance from the robot to the waypoint to the distance



from the end of the corridor to the waypoint. The width of a corridor is the width of the robot plus a user
specified safety margin. The best corridor is selected by picking the corridor that makes the most progress
towards the goal. WOAH will produce a turn speed that will turn the robot towards this corridor.

Once the turn speed has been determined, the next step is to calculate the robot’s forward speed. Since
we are facing less than 90 degrees from the goal, we know that the robot will make progress by going forward.
Therefore, we would like the robot to go full speed unless that would cause it to hit an obstacle. WOAH picks
a speed by considering an arc consisting of the intersections of all the corridors from the corridor at its current
facing to the corridor at the best direction determined earlier. The speed chosen is either the maximum speed
or the speed that will cause the robot to move to the user specified safety margin from the nearest obstacle in
the user specified minimum impact time.

In addition to safety margin and minimum impact time, WOAH has three other non-physical parameters.
Turn intensity is used to generate a scaling factor for turn speed using the expression:

(
|α|

π
)

1/T I

In effect, the larger turn intensity is, the larger the turn rate will be. This is primarily for dealing with variable
control loop times and oscillatory behavior; a value of 1.7 works well with our 10Hz control loop. Turn resistance
causes WOAH to favor corridors near its current facing over ones further away, using a similar scaling method
and the expression:

(cos |goalα − α|)T R

Where cos |goalα − α| is the normalized value for progress towards a goal at some alpha. Its primary function
is to reduce fighting over similar quality corridors by introducing a cost to turning. The final parameter, extra
margin, extends the safety margin around the robot slightly when selecting corridors. This alleviates slow sharp
turns due to quantization error.

3.2 Scheme Code

We have included the Scheme implementation of WOAH below. The d and min-dist functions correspond to the
d function defined above and the minimum of all such d’s in a corridor. The forward-speed function computes
the maximum safe speed in a given corridor. If the goal-flag is set, it will approach the goal slowly as to meet
it rather than running through it like a waypoint. turn-speed determines how fast the robot should turn to
meet a corridor using the formula described above. The goal-progress function is used by the find-direction
function to select the corridor that makes the best progress towards the goal. Finally, the woah-forward and
woah-backward functions are called by the main woah function when the requested angle is in front of and behind
the robot, respectively. It returns the recommended translational and rotation velocity commands.

(define (d w α θ)
(if (> θ α)

(d w (* -1.0 α) (* -1.0 θ))
(*
(/ (sin (- (/ π 2.0) α))

(sin (- α θ)))

(/ w 2.0))))

(define (min-dist w α-left α-right ranges)
(define (corridor-distance θ-range-pair)

(let ((θ (car θ-range-pair))
(range (cdr θ-range-pair)))

(cond
((< θ α-right)
(if (< range (d w α-right θ))

range
+inf.0))

((and (> θ α-right) (< θ α-left))
range)

(else ;(> θ α-left)
(if (< range (d w α-left θ))

range
+inf.0)))))

(min-list (map corridor-distance ranges)))



(define (forward-speed w α goal-distance goal-flag ranges)
(let* ((α-left (max 0.0 α))

(α-right (min 0.0 α))
(safe-dist (- (min-dist w α-left α-right ranges)

(* SAFETY_MARGIN 2)))
(distance (if goal-flag

(min goal-distance safe-dist)
safe-dist)))

(min MAX_SPEED (/ distance MIN_IMPACT_TIME))))

(define (turn-speed α)
(* (sign α)

MAX_TURN_SPEED

(expt (* (abs (/ α π)) 2.0) (/ 1.0 TURN_INTENSITY))))

(define (goal-progress w goal-α goal-distance α ranges)
(* (min goal-distance (min-dist (+ EXTRA_MARGIN w) α α ranges))

(real-part (expt (cos (abs (- goal-α α))) TURN_RESISTANCE))))

(define (find-direction w goal-α goal-distance ranges)
(define (find-better-α α α-progress-pair)

(let* ((old-progress (cdr α-progress-pair))
(progress (goal-progress w goal-α goal-distance α ranges)))

(if (> progress old-progress)
(cons α progress)
α-progress-pair)))

(let* ((angles (map car ranges))
(best-pair (fold-left find-better-α (cons 0.0 -inf.0) angles))
(best-α (car best-pair))
(best-prog (cdr best-pair)))

best-α))

(define (woah-forward goal-α goal-distance goal-flag ranges)
(let* ((w (+ ROBOT_WIDTH SAFETY_MARGIN))

(α (find-direction w goal-α goal-distance ranges))
(speed (forward-speed w α goal-distance goal-flag ranges))
(turn (turn-speed α)))

(cons speed turn)))

(define (woah-backward goal-α)
(let ((forward-speed 0.0)

(turn-speed (* (sign goal-α) MAX_TURN_SPEED)))

(cons forward-speed turn-speed)))

(define (woah goal-α goal-distance goal-flag ranges)
(if (< (abs goal-α) (/ π 2.0))

(woah-forward goal-α goal-distance goal-flag ranges)

(woah-backward goal-α)))

4. PERFORMANCE

WOAH was tested in simulation along with two other obstacle avoidance algorithms: SND and VFH+. We
used the Player/Stage7 system for control and simulation, an environment that makes it easy to switch between
simulation and hardware with minimal, if any, changes. Both VFH+ and SND have existing implementations
in Player, which we used with minor modifications. WOAH is implemented by using GNU Guile† to run the
Scheme code in our Player client program.

The first two sets of tests were performed over 144 maps like the one shown in Figure 2. Each map has a
unique permutation of the small obstacles in the North-West and South-East portions of the map. The simulated
robot is rectangular and has differential drive. Two main sets of tests were run using these maps: static and
dynamic. Static tests use a precomputed path for the robot while dynamic tests re-calculate the path as the

†http://www.gnu.org/software/guile, version 1.9



Figure 2. Test Map. Arrows indicate overall waypoints.

robot runs using a map built from sensor data. The last set of simulation tests were run using a test map similar
to the IGVC navigation challenge. Finally, we ran a small number of tests on our robot, Stark. All tests assume
a robot radius of 0.75 meters for pathfinding with an actual robot radius of about 0.63 meters (half the longest
diagonal).

4.1 Static Testing

Figure 3. Plot of static test data; crosses mark points outside 1.5 inter-quartile range. Lower runtimes are better. Results
show that WOAH performed most consistently and the best; VFH+ was most erratic.

Static tests were run following a static precomputed path created using the A* algorithm with full map knowledge.
This test was run nine times per algorithm per test map.

The results of static testing are summarized by the box plot in Figure 3 and table in Figure 4. Navigating
using static paths is often prone to failure because of its fixed nature; robots that veer off path in the course
of obstacle avoidance can get stuck returning to the path, among other difficulties. Unsurprisingly then, VFH+
and SND experienced a fairly high percentage of failures (defined as taking at least five minutes to complete the



WOAH VFH+ SND

Mean (s) 97.88 138.16 134.45
Median (s) 97.74 135.45 134.43

Std Deviation (s) 1.29 17.02 2.90
Failures 0 306 252

Figure 4. Summary of static test data.

course), about 19% and 23% respectively. Surprisingly however, WOAH experienced exactly zero failures in its
1296 test runs. Performance-wise, WOAH and SND were very consistent with WOAH completing the course on
average about 37 seconds faster. VFH+ was comparatively poor in terms of consistency though it in some cases
preformed nearly as well as WOAH.

4.2 Dynamic Testing

Figure 5. Plot of dynamic test data. Results show that WOAH performed the best and most consistently.

WOAH VFH+ SND

Mean (s) 91.67 114.73 131.25
Median (s) 91.29 111.76 130.78

Std Deviation (s) 1.71 11.70 5.82
Failures 0 22 146

Figure 6. Summary of dynamic test data.

Dynamic tests were run using dynamic pathfinding again using A* but this time using information discovered
by the robot in real time. Like the previous one, this test was run nine times per algorithm per test map.

The results of dynamic testing are summarized by the box plot in Figure 5 and table in Figure 6. Dynamic
pathfinding generally avoids the problem of getting off track as described above, though it is still possible to get
stuck in bad states when the pathfinder and avoidance algorithm disagree. Both VFH+ and SND experienced
significantly less failures in this test. All three algorithms performed better in terms of average times in this
test. This can be explained as the dynamic method allows for imperfect path following, and none of the three
algorithms can follow static paths perfectly. All three also had a higher rate of outliers in this test. This can be
explained by the dynamic map discovery; although the map layout was designed so discovery plays a minimal



role, it still adds another failure case to the pathfinding. The overall performance pattern of each algorithm
was roughly the same as it was with static pathfinding, with WOAH being very consistent, followed by SND
and finally VFH+. VFH+ however, gained substantially more performance than the other algorithms; VFH+
appears to be more desirable with dynamic pathfinding than it is with static paths.

4.3 Stress Testing

Figure 7. Stress Test Map based on IGVC navigation contest. Each number denotes a waypoint.

The last set of simulation tests were designed to stress test each algorithm in a more realistic simulation. The
map was adapted from one of those we use to test for the IGVC navigation challenge as discussed previously.
The resulting map is shown in Figure 7. The robot starts at the center of the map, and proceeds to each
numbered waypoint in order using the same dynamic pathfinding as the dynamic test above. Note that only one
transition, from waypoint five to six, allows the robot to reach the waypoint without having to navigate around
the enclosing box or circle. Localization is handled using an average of two simulated GPS units, each with up
to a meter of drift, mirroring the setup on our physical robot. Each run had a timeout of 900 seconds with an
expected runtime of less than 300 seconds.

Each algorithm was tested 50 times on this map. The results of these tests are summarized by the box plot
in Figure 8 and a table in Figure 9. Results are similar to those obtained in the previous test in terms of WOAH
and VFH+, with the former holding a small lead in terms of speed, consistency. WOAH encountered some
failures here for the first time in our testing, though they were minimal compared to VFH+ and SND. SND
performed quite badly, with a failure rate of 82%. In many cases we observed SND becoming permanently stuck
after reaching only one or two waypoints.



Figure 8. Plot of stress test data. Results show that WOAH perfomed the best and most consistently. SND peformed
notably poorly.

WOAH VFH+ SND

Mean (s) 218.93 245.60 734.80
Median (s) 214.53 248.17 757.59

Std Deviation (s) 19.63 23.09 96.78
Failures 3 12 41

Figure 9. Summary of stress test data.









Figure 10. Sketch of the physical test course. The cir-
cles represent trash barrels and the line a construction
fence. Each number represents a waypoint.

Figure 11. Our robot, Stark.



4.4 Physical Testing

We ran a small series of tests outside using our robot Stark. Stark is a rectangular differential drive robot with
two non-differential GPS units and a digital compass for localization. During testing, a significant cloud cover
caused GPS readings that were even less accurate than those in the above stress test. This led to the robot
spending significant time circling waypoints, and this dominated run times. A sketch of the course layout can be
seen in Figure 10 and a photograph of Stark on the course in Figure 11. Each run consisted of a path from the
start following the waypoint sequence 1-2-3-1-3-2-1 using dynamic pathfinding. The course was run six times
per algorithm.

Figure 12. Plot of physical test data. Results show VFH+ and WOAH performed better than SND.

WOAH VFH+ SND

Mean (s) 137.73 118.48 186.30
Median (s) 131.35 118.05 181.90

Std Deviation (s) 37.39 26.40 29.07
Failures 0 2 6
Figure 13. Physical test data.

The results of this testing are summarized by the box plot in Figure 12 and table in Figure 13. We consider
failures in this case to be any run where the robot struck an obstacle or needed outside intervention to continue.
Additionally, runs that are considered failures are still included in the data set for completeness considering
the low number of runs. VFH+ actually outperformed WOAH in terms of raw speed, but on several occasions
impacted obstacles. SND consistently needed intervention to continue its runs, like the many times it got
permanently stuck in simulation testing, and was significantly slower even considering the time wasted on circling
GPS error. WOAH, though slower than VFH+, did not hit any obstacles on its runs. Reliable obstacle avoidance
is a common application requirement for mobile robots. Overall the test was a bit inconclusive with the time
distortion due to GPS inaccuracy and the low number of runs, but at least demonstrated that WOAH can run
well on a physical robot.

4.5 Ease of Configuration

During the process of setting up and configuring the tests, the ease of configuration emerged as a critical property
of an algorithm. SND was the easiest to configure with only a single non-physical parameter for avoid distance.
Some effort was put into reducing parameters during the initial formulation of WOAH, though it was not a focus



of our work. The result is five non-physical parameters which we were able to tune without much pain. The
Player implementation of VFH+ on the other hand, was much more difficult to configure. As mentioned above,
we had 15 different non-physical parameters to contend with, some of which the documentation failed to clearly
explain.

5. FUTURE WORK

Future work concerning WOAH has a number of potential objectives. The production of an optimized imple-
mentation, possibly using optimization techniques from OpenPath, would allow it to run on resource constrained
platforms. WOAH is currently designed specifically with a four-wheel differential drive vehicle in mind; redesign-
ing it to work with additional drive systems would be worthwhile pursuit. Generalizing the sensory input to
WOAH so that other sensor configurations can be used would allow WOAH to be used by far more robotic
platforms and incorporate additional sensor information. Finally, modifying WOAH to incorporate a dynamic
obstacle model would allow WOAH to operate in more dynamic environments.

6. CONCLUSION

We have presented WOAH, a technique for reactive local obstacle avoidance in primarily static environments.
WOAH leverages basic assumptions about its goals and angular range data to move quickly and reliably through
an environment. In simulation, WOAH follows paths given by a global planner more quickly and more reliably
than both SND and VFH+. Our physical testing demonstrated that WOAH works properly on an actual robot.
More testing is needed to confirm the performance benefit seen in simulation.
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