
A RADICAL DESIGN COURSE: LEVERAGING APIS FOR CREATIVITY
AND INNOVATION IN SOFTWARE

Fred Martin and Georges Grinstein
Department of Computer Science
University of Massachusetts Lowell

Lowell, MA 01854 USA

Sarah Kuhn
Department of Regional Economic and Social Development

University of Massachusetts Lowell
Lowell, MA 01854 USA

ABSTRACT
Software design is becoming increasingly complex; yet
great opportunity now exists with the proliferation of pow-
erful APIs and other design toolkits. Here we describe
an approach to software development that combines for-
mal creativity methods with deliberative use of published
APIs towards the development of a “micro-API”—a highly
focused interface to a “radical product.” We have devel-
oped our ideas in the context of a graduate seminar course.
This paper presents the ideas we pursued—including a dis-
cussion of creativity in software design, and distinctions
amongAPI, language, and application framework—and re-
sults of student work.

KEYWORDS
education, software design, creativity, API

1 Introduction

In today’s software world, it is no longer possible to build
an entire system from scratch. Software engineers use rich
application programming interfaces (APIs) that allow them
to build sophisticated systems. With the power of these
APIs, there is an explosion of possibilities in software de-
sign.

Still, innovation is often hampered by perceived, of-
ten conservative, beliefs. Creating revolutionary products,
whether these products are consumer goods, processes, or
software requires breaking conceptual boundaries.

We propose an approach that can support creative
and innovative software development. Our approach com-
bines deliberate use of creativity-enhancing processes, us-
ing existing APIs in unexpected ways, and an API-pyramid
model of software design.

The ideas were tested in a seminar-style, project-
based graduate course. We titled the course “radical de-
sign,” a deliberately provocative phrase that represents our
aspirations. In this paper, we present the approach, includ-
ing results from this course.

2 The Pyramid Model and the micro-API

We propose a pyramid-based model to describe our ap-
proach to working with software and related technologies

Intermediate
Layers

Base Product APIs

Micro-
API

Figure 1. The micro-API pyramid model.

(Figure 1).
At its foundation is a set of “base products”—

complete APIs for a diverse collection of computing en-
vironments. This includes programming languages, as
well as APIs for specific environments (e.g., GIS, database
search, telephony, video, Google maps, etc.).

At the apex is a domain specific API (a micro-API)
that is highly tuned for implementing a particular, focused,
real-world application (the “radical product”). The micro-
API should contain 10 or so commands and few parame-
ters. Ideally, the micro-API is scriptable, as an end-user
programming language [7].

The middle layers thus negotiate between the full
APIs of these heterogeneous systems and the highly
domain-specific, intentionally designed micro-API for the
radical product.

This architecture should dramatically reduce the com-
plexity of the base layer into a tiny set of commands that
are easily composed into the functional application. Fur-
ther, the micro-API at the pyramid’s apex should be gener-
ative, capable of easily implementing not only the radical
product for which it was designed, but a range of others
that were not anticipated.

3 Course Design

The model was tested in our graduate course, offered dur-
ing the fall 2006 semester. The course drew mostly com-
puter science students with a few students from other de-
partments and one business professional.

The course had two distinct phases. In the first half of

In Proceedings of the 11th IASTED International Conference
SOFTWARE ENGINEERING AND APPLICATIONS
November 19–21, 2007, Cambridge, MA USA
ISBN Hardcopy: 978-0-88986-705-5 / CD: 978-0-88986-706-2

pp. 318–323

the semester, we studied creativity and process methodolo-
gies. We developed our understanding of these approaches
by putting them to use in the design of conceptual projects
(which were proposed but not implemented). Each project
was developed by a group of 4 to 5 students.

In the second half of the course, we embarked on
hardware-software implementation projects. These were
traditional student projects in the sense of being rapid-
prototyping exercises (i.e., implementing a new project
over a period of six weeks that could be viably demon-
strated), but with two extra considerations: (1) the devel-
opment processes were guided by the design and process
discussions from the first half of the course, and (2) the
projects were inspired by the formative hypothesis of the
course—that combining disparate software APIs can lead
to innovative software projects, and that a generativemicro-
API will emerge from this process.

4 Creativity and Radical Design

As the course got underway, we searched for a useful defi-
nition of creativity and our own notion of “radical design.”
Initially, we defined radical design as somethingwhich pro-
duces the “Wow!” reaction—you’ll know it when you
see it. This was partly borrowed from Goldenberg and
Mazursky’s definition: “a creative idea is an idea about
which field experts agree that it is creative” [4] (p. 30).

Some of us were unsatisfied with this definition,
which seemed to skirt the essence of creativity, avoiding
“looking inside the box” of the ideation process. A per-
son might experientially perceive a process as creative, but
if the end result were not innovative to others, the process
would not be rewarded. This led to a definition of creativity
as an act that brings together two or more things that were
previously considered unrelated.

This definition allowed us to recognize both creative
acts and outcomes. An act might be creative, but the out-
come might not be. With this in mind, we defined “radi-
cal design” as something which combined both—a creative
process and an innovative outcome.

5 Creativity Methods and the Process
Project

Broadly, we looked at three conceptual frames for under-
standing creativity: (a) specific processes and techniques,
(b) community expectations, norms, and related environ-
mental factors, and (c) the role of individuals.

5.1 Processes and Techniques

From a broad literature review, we focused on three par-
ticular points of study: the Creativity Templates approach
developed by Goldenberg andMazursky [4], the Six Think-
ing Hats method of Edward De Bono [3], and the IDEO
Method Cards [5].

Creativity Templates are a set of approaches for sys-
tematically searching a design space, looking for unex-
pected affordances or ways of relaxing constraints. The
techniques involve thinking abstractly about a product’s
qualities or properties, and the mechanisms for achieving
these results. By considering these characteristics sep-
arately and systematically (e.g., as a 2D matrix or con-
nected graph of relationships), one can dispassionately
and comprehensively make analyses. The “creative” part
emerges when the method leads you to consider implausi-
ble connections—as hidden opportunities.

Six Thinking Hats is a process approach to harnessing
and focusing individual and group brainstorming sessions.
The process recognizes that different emotional or cogni-
tive mind-sets are valuable at different phases of a design
or problem-solving process, and encourages participants to
consciously “switch hats” during conceptual work.

De Bono proposes six particular “hats”—i.e., think-
ing modalities—eachwith an associated “color”: neutral or
fact-oriented (white hat), emotional or feeling-oriented (red
hat), critical or judgmental (black hat), positive and opti-
mistic (yellow hat), creative and innovative thinking (green
hat), and process-oriented / meta-cognitive (blue hat).

In a session, a leader organizes the collective “switch-
ing of hats,” suggesting that (e.g.) the group share its gut
feelings on a matter by wearing the red hat (and thereby
validating any emotion without the need for it to be ratio-
nally justified), brainstorm in new directions with the green
hat, or voice concerns with the black hat. (For our seminar,
we bought the set of six plastic hats offered by De Bono’s
consulting firm, which did have a fun, constructive effect
on classroom work.)

We made use of the IDEOMethod Cards, a collection
of 51 large-format “playing cards” developed by the IDEO
design firm. Organized into four categories—Learn, Look,
Ask, Try—each card presents one design method used by
the firm, along with a brief story about using it. For ex-
ample, in a technique called “bodystorming,” the designer
“sets up a scenario and acts out roles, with or without props,
focusing on the intuitive responses prompted by the physi-
cal environment.” This method “helps to quickly generate
and test many context and behavior-based concepts.”

In another technique called “affinity diagrams,” de-
signers “cluster design elements according to intuitive re-
lationships such as similarity, dependence, [or] proximity.”
This method is like a less-structured version of the creativ-
ity templates mentioned earlier.

5.2 Cultural Norms

Not everyone agreed on the focus on formal methods as be-
ing central in understanding and encouraging creativity. In
addition to using the Method Cards, we read Tom Kelley’s
book on the company [6], and viewed the ABC Nightline
episode which documented the company’s 1-week “deep
dive” process of re-conceptualizing the common grocery
store shopping cart [1].

While it was clear that IDEO’s designers make ex-
tensive use of the methods and processes they have docu-
mented in the Cards, we also believed that cultures of prac-
tice established within the company play a substantial role
in its success. These cultural expectations encourage indi-
viduals to constantly stretch themselves and contribute to
each others’ thinking. As explained by Kelley, “There are
specific elements which we believe will help you and your
company to be more innovative. But it’s not a matter of
simply following directions. Our ‘secret formula’ is actu-
ally not very formulaic. It’s a blend of methodologies,work
practices, culture, and infrastructure.” [6] (p. 5)

Kelley further describes the effect that the company’s
culture and practice has on its individual members: “[Other
companies] tend to believe that truly creative individuals
are few and far between. We believe the opposite. We all
have a creative side, and it can flourish if you spawn a cul-
ture to encourage it, one that embraces risks and wild ideas
and tolerates the occasional failure.” (ibid., p. 13)

This intersection of culture and practice was further
illuminated by an online essay recently published by a
Google engineer [8]. The essay combines a criticism of re-
flexive adoption of agile design processes with a discussion
of cultural practices inside of Google. These include the
well-known 20% of time on side projects, managers who
are also half-time coders, and a sustainable work pace. But
he also describes a “peer-review oriented culture,” where
individuals care about earning each other’s respect, and dis-
ciplined coding practices, so that code bases are easily (and
routinely) shared across the company.

In both the IDEO case and the Google case, the over-
all picture is certainly one where the whole is more than the
sum of its parts. Each of the practices or methods is useful,
but as a coherent whole, represents an organization that is
creative and productive as a matter of routine.

This realization encouraged us to modify the peda-
gogy of course. While we couldn’t hope to become an
IDEO or Google (in one semester), we did strive to estab-
lish a discussion-oriented and dissent-permitting process,
both our whole group setting (the weekly seminar meet-
ing) and in project teams. Even if the culture of our whole
academic department could not readily be transformed, we
strived to have this happen in the microcosm of the course.

6 Concept Projects

To engaging with the creativity methods, we organized
concept projects during the first half of the semester.
Each course participant identified an existing “radical
product”—an invention that has had a significant impact
on society, and one that was also personally interesting.

Participants identified the product, described its sig-
nificance, and proposed some “radical extensions” that
could be taken. The list of products included headphones,
insulation, microbes, the internet itself, the Theremin, the
toilet, wearable computing input devices, smart shower-

head units, hearing aids, bean bag chairs, flexible solar pan-
els, chairs, and the iPod.

Students pursued a deeper understanding of their
product using techniques from the Method Cards (choosing
one each from the Learn, Look, Ask, and Try categories)
and using one of the Thinking Hats.

Inspired by the IDEO methods, we organized a pro-
cess to form a smaller number of student teams from the
full set of radical products. We listed the complete set of
products on the wall, identifying each product on a single
sheet of poster-size paper. We used the Hats method to en-
courage comments on each product, and asked each student
to vote the three different products he or she found most in-
triguing. This was done in parallel, with students applying
sticky-notes to the poster sheets.

After the voting was accomplished, six of the prod-
ucts were clear leaders. We quickly realized that these
six could be grouped into three categories: Hearing De-
vices (headphones; hearing aids), Toilet/Bathroom (toilet;
shower), and Furniture (bean bag chair; chair).

At this point, a participant suggested we should “vote
with our feet” and simply stand next to the product he or
she was interested in working on. This shortly led to the
formation of three similarly-sized working groups of 4 to 5
students each; these teams stayed together for the next sev-
eral weeks of the semester. Each pursued the creativity and
design methods, produced working documents on a course
Wiki, and participated in full-class debrief sessions.

Teams performed a competitive product survey
(learn), a still photo survey (listen), “extreme user” in-
terview (ask), and bodystorming (try), used the Golden-
berg/Mazursky templates approach to generate unexpected
extensions of their product, and prepared a final report, as a
written document. The final product concepts were imagi-
native and potentially commercializable:

• The Toilet group proposed the development of inte-
grated, seamless, modular entire bathroom units, ex-
panding and combining their initial products (toilet
and showerhead) into a holistic hygenic experience.

• The Hearing Devices group proposed a hearing aid
that also served as a fashion accessory for normal-
hearing people (inspired by the now-ubiquitous Blue-
tooth earpieces), but used off-board DSP-based audio
processing capability for enhanced performance. (We
later learned this idea is being developed by an accom-
plished design firm.)

• The Workstation group proposed design of computer
and desk furniture that is highly and dynamically re-
configurable, to adapt easily to people’s desire to cus-
tomize their work environments.

At the end of the concept-product phase of the course,
we were impressed with the potential of the creativity
methods, had built a culture in the class where public par-
ticipation was commonplace, and had come up with some

interesting ideas. We were ready to work on actual soft-
ware, where practical implementation constraints would
more readily assert themselves.

7 Implementation Projects

To introduce the implementation work, we restated the hy-
pothesis which framed the concept of the course: that radi-
cal (innovative; extensible) sofware projects can arise from
combinations of disparate software APIs, particularlywhen
the resulting software product is restated as its own, new
“micro-API.”

7.1 Introducing APIs

Initially, we thought it would be unproblematic to create a
working definition of an API.We definedAPI as an abstract
interface to an application or system, available to program-
mers to request services, data, operations, responses. The
API or librarymay have several implementations, and is of-
ten distributed as part of a software development kit (SDK).
Its interface may include functions, variables, and data. In
short, in the words of Joshua Bloch, “An API should do one
thing and do it well” [2].

Since the beginning of the semester, we had begun
accumulating a list of APIs on our course Wiki. From this
list, we made an in-class presentation of a small but di-
verse collection of examples, including both software-only
and hardware/software systems: OpenGL, Lucene, Open-
Haptics, Google Maps, Google Calendar, TiVo Home Me-
dia Engine, the Player/Stage robotics package, and Apple-
Script. For each API, we summarized its function and pro-
vided a snippet of sample code.

7.2 Rapid API Mashups

After this introduction, we handed out index cards that had
been pre-printed with titles of the various APIs we had de-
scribed. Each student got a different API, and we randomly
sorted the students together into small groups. Each group
performed a short, 5-minute brainstorming session to come
up a software application that combined all of the APIs. We
ran the activity three times in succession.

There were some humorous examples as well as some
intriguing ones. A group with a voice recognition API,
a physical sensor interface API, OpenGL, and a local-file
search API invented a hands-free coroner examination tool.

7.3 What is an API?

For the following class session, students were to each
choose two APIs (either already on the master list, or they
could add them) and prepare 3-minute brief overviews of
each and a live demonstration of one.

At this session, a more complex picture of the nature
and structure of APIs emerged. The debate first opened

Init SetMusicalProducer
SetScale CreateMusicalProducer
SetMalletSize SetMusicalMaterial
SetMalletMaterial DestroyMusicalObject
GetMalletVelocity Close

Figure 2. GraHapSo drum/cymbol and micro-API.

around PostScript: should this be considered an API (as in
a page-description toolkit) or is it really a language? Does
it depend on how you use it? In addition to the classic
library-with-a-set-of-function-calls model, we observed at
least two other categories for the systems we had put on our
API list:

• Pure languages vs. scripting languages. In addition to
PostScript, we had many other examples of program-
ming languages, including PHP, Perl, and JavaScript,
as well as systems languages like AppleScript.

• Application frameworks. A number of systems
seemed more properly characterized as extensible ap-
plication frameworks, perhaps with some kind of
“pluggable” architecture. Examples of these were
the Apache web server, Player/Stage, Mozilla, and
Eclipse.

Further, we underestimated the domain-specificity of
each technology. Many APIs were only implemented on
one operating system platform (and/or existed only with
a particular application framework). Even well-supported,
multi-platform APIs had significant language-related im-
plementation dependences. In principle it is straightfor-
ward to make calls to a C library from within a Java ap-
plication, but in practice, it is complex.

7.4 The API Groups

In a similar fashion to the way we fostered the formation
of the concept-project teams, we allowed students to self-
select implementation-project teams. We gave the guidance
that we wanted to keep the teams small, with a maximum
of four students per team. Students self-organized around
a combination of APIs they already knew and were inter-
ested in working on, producing five project teams. Here,
we highlight the work of two of the five teams.

7.5 GraHapSo Group

Two of the members of the prior Hearing Devices group
continued to work together on a haptics-based project.
Both had extensive experience with a commercial haptics
product—one as a company founder, and the other as a
graduate student and programmer.

For the new project, they looked to combine the hap-
tics technology, with which they were quite familiar, with
several other APIs, including sound synthesis, a simula-
tion of materials physics that produces audio energy, and a
blogging API. The resulting product would be a palpable
physical simulation of musical instrumentation, including
visual and tangible modes, as well as an adjoining teach-
ing and learning interaction space for students to use in a
physics/music class.

When the idea was presented in class, the general re-
action was extremely supportive, with the observation that
they were proposing two significant systems—the physics-
haptics-audio simulator, and the teaching/learning subsys-
tem. We recommended that they focus on one of the two.
Naturally, they choose the physical simulation.

As work progressed, it became evident that a low-
level simulation of physical resonance of material such as
wood or metal would be quite difficult to obtain. None of
the available physics simulator APIs seemed to have any-
thing resembling this functionality. Eventually, the team
scaled back its goals, and settled on an parameter-based
soundwave synthesis algorithm that could be adjusted to
produce a variety of sounds, including bell-like, glass-like,
and wood-like tones.

Figure 2 shows a screensnap of one of the team’s
early prototypes—dubbed “GraHapSo” (graphics + haptics
+ sound). The drum and cymbal exist as OpenGL graphic
objects and as OpenHaptics palpable objects. A mallet (not
visible in the screensnap) can be used to strike either object;
when this is done, the user feels the resistance of the object
from the physical haptics interface, and hears the resulting
sound, as generated by the audio synthesis.

The group then developed a micro-API which they
used in the final version of their implementation (Figure 2).
Calls in the micro-API initialized their entire system and
allowed placement of different simple geometric solids in
the virtual space. The solids could be of different simulated
material (wood, metal, or glass) and could be various size
and position; these parameters fed into the audio synthesis
to produce a corresponding pitch and sound quality. The
final demonstration was of a xylophone of a dozen slabs of
appropriate size to play a musical scale.

7.6 SlangMapper Group

The core of group was three advanced programmers. They
had explored Google Maps and Google Calendar for the
intro-APIs exercise, and had noted the prevalence of web-
based mashups that included Google Maps, thanks in part
to the generally agreed-upon format for sharing addresses.

APIinit()
addEntry(term, location, paramList)
lookUpByLocation(location, paramList)
printMap()
APIutilities.php file (edit to set startup parameters)

Figure 3. SlangMapper system and associated micro-API.

One member of the group had an interest in linguis-
tics, and the team coalesced around a project that became
called “SlangMapper.” The following narrative, prepared at
the beginning of the six-week implementation, accurately
captures the final product:

The current idea is a linguistics website for track-
ing slang words, their origin and their usage. Our
goal is to track, verify and record slang across the
United States. The primary tools will be the Ur-
ban Dictionary (lookup and verification), Google
Maps (location tracking and display), MySQL
(recording and searching) and findory (RSS feeds
to find occurences). . . . It’s our hope that a com-
munity of users can establish patterns of use
through updating current slang being used.

Figure 3 illustrates the system in action. First, the
system’s database is populated with slang words and their
corresponding locations. The system implicitly trusts users
to enter accurate mappings of words to locations, but vali-
dates words (using the Urban Dictionary) before a word is
added to its database.

In the screensnap, the user has requested a lookup of
the word “wicked” (a common New England slang word).
The system’s database has already been populated with
sample locales where this word has been heard; these clus-
ter around the Northeast region of the United States. To the
right of the map, recent blog entries that have employed the
word are excerpted. Below the map, the definition of the
word (as obtained from the Urban Dictionary) is displayed.

While this tool seems highly specific, the team had
kept the micro-API goal in the front and center during their
design process (Figure 3). The key subsystems—the au-
thentication engine (e.g., Urban Dictionary) and the blog

feed (e.g., Findory) can be trivially replaced with other
sources. After implementation, the designers describe their
system:

[Our project is] a framework for the validation,
collection and display of user defined topics. Our
example application will take user-supplied slang
words and their usage location. It then validates
the information, adds it to the map and displays
relevant articles on the word.
The generalized framework includes: A valida-
tion engine, a user based database and reference
sources (such as articles, blogs, RSS feeds). It is
our goal to allow users to track a variety of topics,
their location and any recent information.

In exploring this generality, the team proposed two
other specific applications of their system: (1) a disease-
tracking tool, where users could enter particular bugs and
locations where they had been observed, and (2) a bird-
watching database, with corresponding functionality. In
thinking about future extensions of the project, the team
proposed a time-lapse visualization mode, which would
display the spread of a database entry throughout geo-
graphic space over time.

8 Conclusions and Future Work

One of the unusual aspects of our work is the integration
of the creativity focusing techniques (e.g., templates and
hats) into the software design process. While it is difficult
to be scientific in an analysis of their impact, in general the
approaches caused us to be more deliberative and reflec-
tive in our design processes. For example, a member of
the SlangMapper team commented, “Although we did not
say ‘let’s use the white hat now,’ we certainly were more
aware of how we communicated with one another and how
to more efficiently present our ideas to each other.”

Another student related impact of the techniques on
projects outside of the course context:

For people in Department of Health and Safety,
I maintain a table form that is a list of dispos-
able chemicals. Users can check-mark Yes, No,
and N/A options, and I was supposed to main-
tain a matrix for insertion of the data and for the
retrieval of the same. Here I used the Template
concept, and used the technique of grouping and
replacing the unnecessary columns in the table.

Another student described how the Replacement
Template was used to generalize his micro-API:

This redeployment is basically the same product
as the original vision, except we have thrown out
the email aspect of the micro-API. In place of
reading mails from a specified email account, we

instead read text files from a specified local direc-
tory (essentially the Replacement Template from
Goldenburg and Mazursky)

We do perceive a growing pervasiveness and power of
APIs and need for software developers to become facile in
using them. Students have also commented on the value of
this orientation in their projects outside of the class.

We anticipate that a thorough vetting of APIs for com-
patibility, usefulness, and ease of use would produce sub-
stantially better results. This could partly be done by our-
selves and graduate researchers before the next iteration
of our course; also, we could allocate more time for stu-
dents to become experienced with a single API before ask-
ing them to combine them.

As to the core assertion of our hypothesis—generative
power of micro-API—we achieved mixed results. Cer-
tainly, teams that had the micro-API in mind as they pro-
gressed through their design process were more successful.

We do see that the power of the micro-API will only
be revealed when it is itself embedded in an easy-to-use
scripting environment. This will allow for true end-user
programmability, ideally by persons other than full-time
software developers.

While this work is not a controlled study, we believe
that creativity techniques caused our students to consider
alternatives that otherwise would have been overlooked.
We are optimistic that micro-APIs present an approach to
the growing complexity of programming systems today.
Our goal is powerful software that is easily re-configurable
and adaptable. We are confident that the Radical Design
approach is a significant step in the right direction.

9 ACKNOWLEDGMENT

We would like to thank our students for their creativity and
willingness to explore these ideas together, and we wish to
thank our respective department heads for allowing them
to co-teach the Fall 2006 Radical Design course and have
it fully count toward our teaching loads.

References
[1] ABC News. Nightline: The Deep Dive. abcnewsstore.com, Howell,

MI, 1999.
[2] Bloch, J. How to design a good API and why it matters. In Confer-

ence on Object Oriented Programming Systems Languages and Ap-
plications (OOPSLA). Portland, Oregon, 2006, 506–507.

[3] De Bono, E. Six Thinking Hats. Back Bay Books, 1999.
[4] Goldenberg, J. and Mazursky, D. Creativity in Product Innovation.

Cambridge University Press, Cambridge, UK, 2002.
[5] IDEO. IDEO Method Cards. William Stout Architecture, San Fran-

cisco, CA, 2003.
[6] Kelley, T. The Art of Innovation: Lessons in Creativity from IDEO.

Doubleday, New York, NY, 2001.
[7] Nardi, B. A. A Small Matter of Programming: Perspectives on End

User Computing. The MIT Press, Cambridge, MA, 1993.
[8] Yegge, S. Good agile, bad agile. steve-yegge.blogspot.com/

2006/09/good-agile-bad-agile_27.html.

