UMass Lowell Assignment #4
CS 308 - Intro to Operating Systems

IMPLEMENTING A CPU SCHEDULER - DUE: OCTOBER 12, 2005

Assignment Summary
You will implement a CPU scheduler in the OSP framework.

Practical Notes
For the implementation project, there are two things to turn in:

e The paper assignment cover sheet (a copy is attached) describing your results.

e Electronic files using our submi t system.

Part I: Textbook Problems.
Prepare written answers to the following questions. Turn these in with your cover
sheet submission on the assignment due date.

1. Tanenbaum, Problem 1, pp. 153 (process state transitions).
2. Tanenbaum, Problem 15, pp. 154 (threads without select).

3. Tanenbaum, Problem 18, pp. 154 (races).

Part Il: Implementation.

In this part of the assignment, you will implement one module of a simplified operating
system, and will test it using the operating system simulator OSP. You will implement CPU,
the CPU scheduler.

You should write the code to satisfy the descriptions given in the OSP Programmer’s
Manual and the requirements below, making use of what you have learned about operating
systems to fill in the missing details. The modules you write will be linked with the rest of
the system, and tested with various simulation parameters.

Before attempting to do this assignment, make sure that you have skimmed through
all of OSP: An Environment for Operating Systems Projects, and have studied in detail
Sections 1.1, 1.2, 1.3, 1.4, 1.7, and 2.

The “class account” referred to in the OSP pamphlet is

[usr/cs/fac4dlfredm ww courses/ 91. 308-fal | 05/ osp/



The subdirectory for this assignment is cpu. To begin the assignment, copy the files:

cpu/ Makefile
cpu/ cpu. c
cpu/ di al og. c
cpu/ osp. o
cpu/ GSP. denp

into your own work directory. You should work on ner cury or another department
Linux machine. You will link to object code that has been compiled for Linux.

You will have to edit the file cpu. ¢ to incorporate your own code. After edits, run
mak e to compile and link with the rest of the system, resulting in an executable file OSP.

You will submit your program and three simulation runs electronically using the submi t
program. Further information about what files to submit will be posted on the course
Yahoo! discussion board.

Evaluate your scheduler under two different performance runs. Simulation parameters
for the two runs are in:

cpu/ si m par. hi gh
cpu/ sim par.| ow

The par . | owfile will test your program with low frequency of new process arrival,
whereas in par . hi gh this frequency is high.

To compare your results with the statistics generated by the standard CPU scheduler,
see:

cpu/ simrun. | ow
cpu/ si m run. hi gh

Make sure that your name and login name are included in your source file. Also,
include (as comments) a one-half to one page explanation of the statistics obtained
during your test runs, and how they compare with those obtained by the standard
scheduler.

Module CPU

The module CPU includes the function i nsert _ready, which is used to insert a
PCB into the ready queue at the proper position, and the dispatcher (function di spat ch),
which performs a context switch to the next process to be run. The dispatcher must perform
the following tasks:

e If there is currently a process running, and it has not finished its CPU burst, then
return that process to the ready queue, changing its state from “running” to “ready.”

e Select the next process to be run (if any) from the ready queue, changing its state
from “ready” to “running.”

e Initialize the | ast _di spat ch field in the PCB to the current system time, and
make any initializations required in other scheduling fields in the PCB.

2



e Set the timer to interrupt at the end of the next quantum.

e Perform a context switch to the new process by making the page table base register
PTBR point to its page table.

Scheduler Details

You should implement a scheduler that has a two-level feedback queue, consisting of a
“high priority queue” and a “low priority queue.”

You should maintain information about the recent CPU usage of a process, and attempt
to put 1/0-bound processes in the high-priority queue and CPU-bound processes in the low-
priority queue, so that on the average, the high-priority queue contains processes with short
CPU bursts and the low-priority queue contains processes with longer CPU bursts.

The dispatcher should not always prefer the high-priority queue over the low-priority
queue, but instead should attempt to allocate CPU time between the two queues to get the
best system performance. One scheme would be to allocate CPU time equally between the
two queues, so that the high-priority queue will tend to cycle faster than the low-priority
queue (assuming you have managed to get mostly processes with short CPU bursts in the
high-priority queue and mostly processes with long CPU bursts in the low-priority queue).

You should try to tune your scheduler to get the best performance under a variety of
conditions. The main parameters you can adjust are the ratio of CPU time allocated to
high-priority queue as opposed to the low-priority queue, and the method by which you
decide into which queue a process should be placed.

HINT #1: In the directory
[usr/cs/fac4dlfredni ww courses/91. 308-fal | 05/ osp/ cpu/ starter,
you will find sample solution code for a “random” scheduler. Each time it is called, this
scheduler randomly picks a process from the queue of ready processes and schedules it.
You should examine this code to understand how it works, and attempt to build a sched-
uler that performs better than it.

HINT #2: First, build your understanding by implementing a simple round-robin schedul-
ing algorithm. Getting this running will be most of the battle. Once you have this working,
then implement the more sophisticated scheduling algorithm described above.



