
A Toolkit for Learning:
Technology of the MIT LEGO Robot Design Competition

Fred G. Martin
The Media Laboratory

Massachusetts Institute of Technology
Cambridge, MA

fredm@media.mit.edu

ABSTRACT

The LEGO Robot Design Competition at the Mas-
sachusetts Institute of Technology is a hands-on,
project-based workshop class for undergraduates
developed to excite students about robotic technol-
ogy as they build a competitive autonomous robot
of their own design. This paper analyzes two as-
pects of the technology created for the workshop:
the robotic contest specifications and the hardware
and software control technology created for the
students’ use. The goal is to illuminate the it-
erative process of designing the workshop class,
which led to lessons about educational technol-
ogy, classroom culture, and its impact on students’
learning. The results of this work include recom-
mendations about structuring design problems for
students, features of educational technology for
maximizing students’ learning, and thoughts on
the role of design in engineering education.

Each year since 1991, over one hundred and fifty under-
graduates at the Massachusetts Institute of Technology have
participated in the “LEGO Robot Design Competition,” an
experimental workshop class based on the central activity of
building a fully functional autonomous robot. This paper
focuses specifically on an analysis of the technology created
for the workshop, and lessons about effectively structuring
materials and problem spaces for students’ design work.

A brief introduction to the Robot Design workshop will
serve as a prelude to the content of the paper. The pop-
ular class, taken by students on a voluntary basis during
the January semester break, immerses students in an inten-
sive, hands-on design experience. Working in teams of two
or three, students encounter key ideas in engineering and

Figure 1: Poster advertising the Robo-Pong contest to the
MIT community.

robotics: electronic hardware, software design, mechanical
design, control theory, and systems integration. More im-
portantly, the workshop gives students the opportunity to
design—to take their own ideas from initial conception to
implementation, debugging, and application. In addition, as
they prepare for the final competitive performance, which is
attended by several hundred members of the MIT commu-
nity (see Figure 1), students confront real-world engineering
issues of performance, reliability, and deadlines.

The pedagogical approach taken by the Robot Design class

has roots in the constructionist theories of learning developed
by Seymour Papert [5]. According to Constructionism, the
acquisition of knowledge, skills, and abilities is an active
process of creation engaged in by the learner. This process
can be catalyzed when the learner is building something in
the world in addition to building knowledge inside his or her
own mind. The artifact that is created serves as an “object to
think with,” in Papert’s terminology, that allows the learner
to reflect on his or her own ideas as they are expressed in the
project itself.

Based on this theory of learning, the Robot Design work-
shop offers a valuable model of a classroom and workshop
experience for university-level engineering students. By rec-
ognizing the central role that design can have in the learning
process, the class inspires high-quality learning, genuine in-
terest, and confidence in students at a variety of stages in their
academic careers. Students learn not only about the techni-
cal issues mentioned, but also about teamwork and project
management, and they experience the engineer’s satisfaction
and exhilaration of bringing one’s ideas into reality.

This paper examines two aspects of the technologycreated
for the Robot Design workshop: the robotic contest speci-
fications and the custom hardware and software materials
created for students’ use.

CONTEST DESIGN

Rather than setting a specific problem to be solved, the
robotic contest lays out a broader design space which shapes
the students’ engineering experience. To encourage stu-
dents’ creativity, the contest encourages a variety solutions
by providing multiple paths to viable solutions.

The contests attempt to provide the proper amount of in-
tellectual challenge. No one is served by a problem that is
too difficult to solve, and likewise a puzzle that is too easy
may not bring out the best in those who attempt to solve it.
Additionally, the contests promote a positive social message,
and strive to be inclusive of different personal styles.

A brief introduction to the progression of contests devel-
oped for the Robot Design project will serve as an orientation
for the discussion and analysis of contest design parameters
that follows. The following summarizes the progression
of the Robot Design contests from its inception, in 1986,
through end of this study, in 1992.1

Battle of the C-Robots. In this first year, and the subse-
quent year, the contest consisted of a software-only
programming challenge in which a master computer
program simulated the environment of the robots in
the fashion of a video game. The C-Robot contest chal-
lenge consisted of writing a computer program to locate
the other students’ programs and shoot them. Thus, the

1During the first two software-only contests, I was involved as an
observer (C-Robots) and as a robot-programmer (XTank). My work
as a contest designer begins with the King contest, and I include
these brief observations about the earlier contests for completeness
and to note their relevance in shaping the later ones.

video game characters were controlledby students’ pro-
grams rather than being controlled by a game player’s
dynamic hand-eye coordination.

XTank. The second year of the project was in the same style
of the first, however the video simulation was much
richer.

King of the Mountain. This first of the hardware-based
contests consisted of the challenge of building a robot
to climb to the top of a large paper-mâché mound, in
the fashion of the children’s game that goes by the same
name.

Robo-Puck. In this contest, three robots at a time competed
to gain possession of a physical hockey puck (which was
modified to include an electronic infrared light source).

Robo-Pong. Building on the sports theme, Robo-Pong pit-
ted two robots in a contest to transport ping-pong balls
onto the other robot’s side of the table.

Robo-Cup. Also based on ping-pong ball manipulation,
each of the two Robo-Cup players had to extract balls
from a feeder and deposit them into their respective
miniature soccer-like goal, in an attempt to score more
points than the opponent.

The subsequent discussion focuses on three aspects of con-
test design: the need to encourage a diversity of solutions
in the students’ designs, finding a balance between structure
and difficulty in the contest problem, and the social implica-
tions of contest design.

Strategic Diversity

A key to creating a rich learning environment lay in provid-
ing a contest specification that while giving guidance was
open enough to encourage innovation. By inspiring students
to create a multitude of approaches in solving the contest,
we conveyed the message that there isn’t one right way to
approach a problem, and stimulated students’ sense that orig-
inality and creativity are valuable engineering skills.

As early as the XTank contest, we saw that a successful
contest allowed multiple solutionstrategies and a diversity of
approaches. Even though this contest was purely software-
based (the “robots” competed on a computer-simulated
maze-like terrain), students were given wide latitude in the
specification of their tank’s properties, which led to adoption
of different play strategies.

Students competing in the XTank contest were allowed to
spend a certain number of “dollars” on parts to build their
tank. This included choices like the size of the engine, the
type and amount of armor, and the types of weapons the tank
would carry. A typical tradeoff might be choosing expensive
armor, which is light and would allow a tank to remain quite
maneuverable, versus inexpensive armor, which is heavy
and would impede a tank’s agility (but would leave money
available for other uses).

All subsequent contests were based on physical robot-
building materials, which by their very nature are far more

6 foot diameter circular rink

Robot starting
positions

Infrared-transmitting
hockey puck

Figure 2: Playing table for the Robo-Puck contest.

Figure 3: Bertha, a simple but successful puck-fetching robot
from the Robo-Puck contest.

configurable than any predesigned software toolkit. We pro-
vided LEGO Technic materials for the mechanical aspect of
robot design, a versatile and powerful kit of parts for me-
chanical design.

In the contests, we encouraged creativity by not overcon-
straining the task to be performed by the robots. Still, we
needed to provide enough structure to focus students on par-
ticular robotic tasks. King of the Mountain , our first contest
with“real” robots, was mostly a proof-of-concepteffort. The
task of climbing the mountain was performed with the use of
inclination sensors. Students’ robots were relatively simple,
but so also was the control technology that we provided to
them.

In Robo-Puck, three robots played on a six-foot diameter
circular rink and attempted to gain control of an infrared-
emitting hockey puck, which was initially placed in the center
of the rink (see Figure 2).

Robo-Puck was also a fundamentally simple contest, but
it inspired a variety of different solution strategies. The most

4’

6.270: The LEGO Robot Design Competition
‘‘ROBOPONG’’

Playing Surface

SIDE VIEW

TOP VIEW

Contestants begin in diagonally opposite circles marked on the table.
Two Contestants and 15 balls
6 balls on each side of the table and 3 balls in the middle plateau
4.5 inch high clear plexiglass rim surrounding the playing surface
The playing surface will divided into a dark region and light region
The playing surface may not be permanently altered or destroyed
All evidence of an entry must be removed within 30 seconds after the end of the round
Robots may not exceed a 1’x1’x1’ Max at the beginning of the round

OBJECT: At the end of a 60 second round have fewer balls on your side than your
opponent has on his side.

Not To Scale

2’ 5" 2’ 5"

12"
3.5"3.5"

3.5"

Figure 4: Robo-Pong game design

common design was a puck-fetching robot. In this design,
the robot drove toward the puck and attempted to capture
it. Bertha, a successful puck-fetcher design, is depicted in
Figure 3. Other designs included a dual-robot puck-fetcher
(a smaller, faster robot grabbed the puck, while its slower,
larger brother followed by capturing the first robot); a robot
named Shotgun, which fired a retractable claw at the puck;
and several aggressor robots, which attempted to flip other
robots. These latter designs were not successful.

While Robo-Puck was based on a single game object (the
puck), the Robo-Pong contest (see Figure 4) included multi-
ple game objects (a total of fifteen ping-pongballs). This was
a specific attempt to encourage different approaches from the
students. For example, we placed three balls on the center
plateau to entice some students to have their robot play for
those balls first.

Results from Robo-Pong were quite encouraging. Suc-
cessful robots demonstrated a variety of competences, such
as the ability to climb uphill and downhill, maneuver in the
ball trough area, and coordinate activities of collecting and
delivering balls. Overall, ball-collecting robots were the
most popular design choice, but a number of student teams

5’1’

2’

1’

Goal

Balls are Dispensed 6"
from the Wall

Touch Switches
to Request Balls

Goal

4’

Starting
 Area

1’

Starting
 Area

The ‘‘Robo-Cup Soccer’’ Playing Field

1.5’ radius

6’’

Figure 5: Robo-Cup Contest Playing Table.

opted for ball-shooting robots, and several attempted aggres-
sive designs, including ones with arms that would sweep all
center balls over the top and try to trap the opponent in one
grand gesture.

There were several considerations behind the design of
the subsequent Robo-Cup contest, largely in reaction to per-
ceived flaws in Robo-Pong. We believed that Robo-Pong was
not sufficiently structured to bring out the best in the students.
The other problem was that Robo-Pong was vulnerable to a
simple aggressive strategy which could have overrun more
sophisticated robots.

In order to strike a balance between these factors, the
Robo-Cup contest made it significantly more difficult for a
robot score points and hence be able to win. Figure 5 shows
the Robo-Cup playing field, from a bird’s-eye view. The task
was to collect ping-pong balls from the ball dispensers and
transport them to the appropriate goal.

Robo-Cup succeed in coaxing more reliable solutions from
the students, but at the cost of reducing the variety of solution
strategies. Nearly all Robo-Cup robots were one of two va-
rieties: ball carriers, which shuttled balls from the dispenser
to the goal, and ball shooters, which parked themselves at
the dispenser and fired balls into the goal. The ball carriers
were the dominant design, and many contest rounds ended
up being races as each of two carrier robots transported balls
into their respective goals, effectively ignoring the other’s
presence.

Challenge Level
Closely related to the issue of encouraging strategic diversity
is the issue of targeting a contest’s complexity to provide an
optimal challenge to the students. This issue came up after
an analysis of the Robo-Pong contest.

We considered the Robo-Pong contest to have been quite
successful; an interesting variety of robots were built and the
robot designers seemed to be well-challenged by the contest
specification. There seemed to be a flaw, however, related
to the fact that the Robo-Pong contest could be solved by a
relatively simple robotic mechanism. That is to say, building
a simple robot that was capable of knocking at least one ball

onto the opponent’s side was all but trivial.
As it happened, a number of robots with such a minimal

level of functionality were able to qualify for competition.
Quite a few of the final robot designs did not ever work
dependably or reliably; they simply moved around enough
to knock a ball or two over the center plateau and hence
win a round. It seemed that because an erratic performance
would win a round here and there, some students were not
sufficiently challenged in the design task and ended up field-
ing robots that were not particularly competent. Thus while
Robo-Pong had the important characteristic of being solv-
able, it perhaps erred too far in that direction.

For example, one of the Robo-Puck robots was intended to
drive back into its trough, drop a pair of arms to either side,
and sweep all of its balls plus the center balls over to the other
robot’s side of the table in one fell swoop. Unfortunately,
the students building this machine had difficulties both in
implementing their idea and in working together as a team.
When there were just a couple of days before the contest
and their robot was far from working as they had hoped,
the students programmed the robot to simply drive forward
until getting stuck, and then back up and go in the opposite
direction. So the robot would drive forward and backward,
crashing into walls or other objects as it did so.

To the genuine surprise of all concerned, the robot (named
Stupid Scorpion) did extremely well in the contest perfor-
mance, placing third best overall among all entrants. It
achieved this result through its simplicity and dogged perse-
verance. Many other robots would get stuck and fail for the
rest of the round, but Stupid Scorpion just kept driving back
and forth, and somehow it just kept winning.

In a sense, Stupid Scorpion was a deserving winner be-
cause it was persistent and reliable. But there were about ten
to fifteen other robots that really didn’t work but were able to
qualify for the contest by winning a round “by accident”—in
the manner that Stupid Scorpion did “by design.” We felt
it would be better for the students if they were challenged a
little harder to build something that really worked. So this
became an important constraint in designing the next year’s
contest: robots shouldn’t be able to win by accident.

We generated the idea of using specific goal areas rather
than goal troughs, as we had in the Robo-Pong contest, as
a way to make it unlikely that robots could score by er-
ror. Additionally, we established a disqualification rule for
non-performing robots. The changes can be summarized as
follows:
Higher Minimum Performance Threshold.

In Robo-Pong, a robot could win a round (and thereby
qualify for competition in the preliminary round) simply
by driving uphill and knocking a ball off of the center
plateau. In Robo-Cup, a robot had to successfully per-
form a number of competences, including finding the
ball feeder, dispensing a ball, locating the goal, and de-
livering the ball to the goal. Each of these activities was
individually as complex as the hill-climbing task that
minimally satisfied the contest in Robo-Pong.

Disqualification for Non-Performing Robots.

Teams whose robots were unable to score a single ball in
the preliminary round were given until midnight of the
evening preceding the main contest to get their robots
workingwell enough to score at least one ball in a round
without interference from an opponent. Otherwise, they
would not be allowed to compete in the main contest.

Robo-Cup succeeded in steering students toward more
functional designs, but at the expense of a diversity of solu-
tions, as noted earlier.

The Social Message
Using a competition as a pedagogical tool can present a
conflict: if students are highly competitive, they may not
wish to share their ideas with others, based on the perception
that this would be revealing valuable information that would
comprise their robot’s chances in the contest. We realized
this and made every effort to discourage this sort of behav-
ior, encouraging students to share ideas with one another
and consider the final contest a friendly affair rather than a
dead-serious one. Many students made an effort to share
ideas publicly, and reported that their learning experience
benefitted as a result of it.

In addition, we made attempts to move away from the
early destructive images of robot-play that we inherited from
the contest’s origins. The organizer of the King of the Hill
contest promoted it with images similar to those promoting
the popular American monster truck rallies and demolition
shows. The later contests we developed were based on sport-
ing events, like hockey, tennis, or soccer, and were promoted
with images like the one shown in Figure 1, advertising the
Robo-Pong contest. We believed that it was important to
de-emphasize the destructive potential of technology as both
a positive example and as a way of encouraging participation
from those with less hyper-competitive personalities.

This effort extended in detail into the design of the contests
themselves. Midway through the progress of the Robo-Pong
class, we realized that there was a flaw in the contest design
in which just about any strategy would be vulnerable to a
dedicated aggressor robot. The strategy of such a robot
would be to head straight for its opponent at the start of the
round; it would win by (1) bringing one or perhaps two of
the balls from the center plateau over to the opponent’s side,
and (2) trapping the opponent before it could do anything.
We considered this a problem because we didn’t want create
a contest that rewarded this kind of behavior, both because it
would be a bad lesson and because it would discourage the
creation of more interesting, complex strategies.

These observations fed into the design of Robo-Cup, the
subsequent contest. In all previous contests, robots were
more or less encouraged to collide with one another. In
King of the Mountain , robots congregated at the top of the
mountain. In Robo-Puck, robots fought for possession of the
puck. In Robo-Pong, robots were likely to collide as they
drove over the top of the playing field.

For Robo-Cup, to reduce the likelihood of unintentional
collisions, we designed a defaultpath pattern that wouldkeep
the robots away from each other. Robots were allowed to

draw balls from either ball feeder, but the surface pattern
on the table connected each goal to one feeder—it was far
simpler to build a robot that shuttled balls back and forth
from the goal to the favored feeder than the other feeder. This
implementation, combined with the fact that it was difficult
to score a goal in Robo-Cup, effectively discouraged the
creation of simple brute force attack robots.

HARDWARE AND SOFTWARE DESIGN

In addition to the design of the contest specifications, we
created specific hardware and software technology for the
students’ use in designing their robots. These materials had
a tremendous impact on the nature and style of ideas explored
by the students and embodied in their robots. The concerns
that guided our designs were:

Level of Abstraction. Any educational technology hides or
isolates the user from certain phenomena while reveal-
ing or highlighting others. In developing tools to fa-
cilitate the design of robots, we paid special attention
to the sort of technological ideas we were exposing.
Since a robot is a system comprised of a variety of
media—electronics, programming, and mechanics—it
was necessary to be clear on which concepts we ex-
pected students to master and which others they could
simply use.

Observability. The students’ robots became fairly com-
plex, multi-layered systems which included mechani-
cal, electrical, and software components. Many stu-
dents had little prior experience working with such sys-
tems, and became stymied by the difficulty of debug-
ging the interacting components of their systems. We
saw this as a valuable educational lesson, but strove to
make the operation of the technology that we provided
evident, so that students would be able to deal with their
robots’ complexity.

Interactivity. Central to our project pedagogy was the belief
that people learn best by exploring ideas in a playful
manner. This was themodus operandi of our technology
development, and a key concern was creating materials
that would encourage this behavior in our students.

Transparency. Even if a certain idea is encapsulated by the
layer of abstraction, it should be easily accessible to stu-
dents who are interested. For example, we determined
that students should not need to have a deep understand-
ing of digital electronics in order to build their robots.
But we did not want to prevent or discourage students
from exploring this topic as part of their robot-building.
Quite the contrary, we hoped to invite them to do so
through the design of our materials, while simultane-
ously taking pains not to intimidate students who might
not be interested in this topic.

The technology developed for the Robot Design work con-
sisted of three stages of increasing sophistication and educa-
tional value. These stages reflect both our technical learning
process—our increasing ability to fluently express our model

tethered 1. Remote Controller

* tethered to desktop computer
* hand-wired
* basic functionality

download

* program downloaded to robot
* machine programing
* batch-mode interface
* difficult to debug

2. Assembly Language Controller

* program downloaded to robot
* procedural programming
* interactive interface
* helpful status information

3. C Language Controller

download

Figure 6: Three stages of robot control hardware.

of an effective educational technology for robotic design—
and our understanding of what this technology should be.

The first stage of technology was a hand-wired Remote
Controller. Students built a controller board into their robots
which was tethered to a desktop computer. The desktop
computer acted as the “brain” of the robot: the remote board
was simply used to interface the motors and sensors to the
desktop machine. This was the technology used by students
of the King of the Mountain contest.

The second stage enabled students to create truly au-
tonomous robots that did not require a clumsy tether. Used
in the Robo-Puck contest, the Assembly Language Controller
allowed students to download a program from a host com-
puter, at which point the host could be disconnected and the
robot would run on its own. The Assembly Language Con-
troller so named because it was programmed in assembly
language, a primitive and low-level computer language.

The third stage also allowed robots to roam free from
the host computer, but allowed students to develop their
programs interactively and with the use of a high-level pro-
gramming language. The C Language Controller board had
a number of other features that made it a much more versatile
platform for the students’ work than the two previous stages,
as will be discussed.

Figure 6 illustrates these three stages of technology design.

Levels of Abstraction
The short course description advertising the Robot Design
project to MIT students read like this:

You are given a kit containing a microprocessor,
LEGO blocks, batteries, motors, sensors, and wire.
Your task: design and build a robot to play in

a robot sporting event (details to be provided).
Lectures, recitations, and lots of laboratory hours
will help you in your task. You have one month.

Many students took this description literally and expected
us to hand them an unsorted potluck of electronic compo-
nents, with the implicit message “here’s a bunch of junk;
figure out how to do something interesting with this stuff.”
But we never would have attempted to run a course like that,
because students would spend all of their time reinventing
the basics of robotics. Instead, we provided materials that
gave them a basis of capability upon which they could build.

In fact, an important design criterion of our materials and
the course as a whole was that no specific technological
knowledge should be a prerequisite (with the exception of
some programming background). We did not require stu-
dents to know soldering skills, circuit design, mechanical
design, or a particular programming language in order to be
participants. These skills would be learned as needed during
the progress of their robotic design work.

Borrowing the terminology of Abelson and Sussman [1],
I call the level of functionality provided by our control
hardware (for example) a layer of abstraction. By this I
mean that the control insulates the user from lower-level
issues of implementation—the electronic circuit design, for
example—rather than suggesting that there is something “ab-
stract” about the hardware. The notion of abstract in this
sense is to suggest the underlying technologies that have
been insulated from the user’s attention.

Beginning with our earliest systems, students did not have
to concern themselves with issues of microprocessor circuit
design in order to use these tools. In our later systems,
students were “abstracted away” from problems of machine
language programming (which they were exposed to in ear-
lier systems). This section explores the abstraction issue
from a pedagogical point of view.

Bits and Bytes
The students who used the Remote Controller didn’t have

to learn the details of the electronic circuit on which the
controller was based, but they did have to work at a fairly
low level in order to control motors and receive data from
sensors. In order to power a motor, a byte with the correct
combination of bits set to zero and one would be sent from
the host computer to the controller. In order to interpret
sensor data, a byte received by the host computer would be
checked for a one or a zero in the proper bit position. Thus the
remote controller allowed students with little circuit design
experience to build robots, but forced them to deal with bit-
level manipulations in order to interface with their robot’s
motors and sensors. We saw this as beneficial; the concepts
were well within the grasp of the students, and provided a
valuable lesson in interfacing hardware and software.

Machine Registers
For the next year’s class, the Robo-Puck contest, we cre-

ated the Assembly Language Controller. This allowed stu-
dents to build robots that “carried their own brain” and oper-

ated autonomously from the desktop computer. The desktop
computer was still required to compose and download pro-
grams to the robot, but it was no longer used when the robot
was running.

The use of the Assembly Language Controller was similar
to that of the Remote Controller: students worked at the level
of bits and bytes to control motors and process sensor data.
Additionally, however, there was the complexity of the mi-
croprocessor upon which the Assembly Language Controller
was based. Students were required to program directly in the
machine language (or assembly language) of the micropro-
cessor, and forced to understand issues like which machine
register to use to control the motors and what sequence of
operations was necessary to retrieve information from the
sensors.

Though it was valuable for some, the use of assembly
language was problematic for the majority of the students.
Most students had never programmed in assembly language
before, and were left with little time to learn to do so in the
tight schedule of the class. The conceptual overhead involved
in doing the most minimal programming task (e.g., proof-
of-concept code that turned on a motor based on a sensor
reading) was significant: the creation of even a trivial robotic
task required the understanding of a variety of mundane
programming details.

Our conclusions from the experience of using the Assem-
bly Language controller were mixed. While the majority
found it difficult, it was clear that some students were em-
powered by the low-level, “nuts and bolts” nature of the
microprocessor-level programming task. Some of the prob-
lems we experienced could have been mitigated by better
presentation of the conceptual material and the provision of
better software tools. On the other hand, it was apparent that
the degree of complexity of the robots that students would
build was fundamentally limited by the low-level program-
ming environment.

The question we faced was whether to upgrade the technol-
ogy to support high level programming and control, allowing
students to build more complicated systems, or to retain the
more primitive tools, allowing students to experience the sat-
isfaction of moving bits and bytes around to get work done.
With some reservations, we chose to move forward with a
higher level environment.

Procedural Programming

We decided that it would be advantageous to give students
a higher level interface to their robot design work, shield-
ing them from details of microprocessor programming but
offering them the possibility to express more complex ideas.
This was a difficult decision, as we felt that the assembly lan-
guage programming experience could be quite valuable for
students, but it was in keeping with the overall philosophy
of the project. In giving students a predesigned controller
board and predesigned sensors, we were abstracting them
away from low-level details of digital and analog electronics;
if we provided them with a higher level software interface,
it would be continuing an established trend. The value of

the providing students with a higher level software environ-
ment would be evaluated by seeing the sorts of problems in
which they became engaged, in comparison to the sorts of
problems they encountered in the earlier assembly language
environment.

We created a hardware and software system to allow stu-
dents to program their robots using the C programming lan-
guage. We called the language Interactive C to highlight its
interactivity, which was an important aspect of its usability;
this feature will be discussed later in this section.

With Interactive C, students used procedure calls to in-
terface with the motors and sensors of their robots. For
example, the statement “motor(0, 100)” would be used
to turn Motor 0 on at speed 100 (full speed). The state-
ment “if (analog(0) > 100) {...}” would cause
the expression in braces to be executed if sensor 0 was greater
than 100. Thus students had a high-level interface to the hard-
ware of their robots and for expressing their control ideas.

The results of evaluating students’ use of the Interactive C
system convinced us of the value of this approach. Students
created significantly more sophisticated robotic systems than
they had in either of the previous two years. A few students
did express disappointment that they were shielded from the
lower level of hardware and software operation, but by the
end of the course, they agreed that it was better to have the
expressive power that the higher level system offered.

By providing the higher level tools, students were able
to work with a different category of conceptual material.
Rather than being concerned with what combination of bits
was required to enable a motor, they could focus issues like
algorithms for processing sensor data and strategic methods
for organizing their robots’ behavior.

Observability

Another issue affecting the pedagogical value of educational
technology is related to the observability of systems that are
constructed with it.

Use of the LEGO Technic system will serve as an example.
When a student constructs a machine using LEGO Technic
parts, the functioning (or lack of) of the object is, generally
speaking, in plain view. This is to say that with straightfor-
ward observation and interaction with the artifact, the builder
can readily determine what its modes of operation and modes
of failure are. For example, if a LEGO structure often breaks
apart at a particular joint, is it more or less apparent which
joint is faulty. Solutions to repairing such problems may
or may not be immediately evident, but problems are easily
diagnosed.

Thus we can say that the LEGO Technic system provides
a high degree of observability: through natural interactions
with the material, the user can readily determine the proper-
ties of artifacts that he or she has constructed with it.2

2There are some aspects of the LEGO system which I would not
consider highly observable. For example, if a rectangular frame is
not rigidly braced with square corner joints, then axles supported by
it will lose large amounts of energy in their bearing supports. This
problem is by no means obvious to the builder. Still, this example

The issue of observability become an important concern
after evaluating students’ work with the Assembly Language
Controller and its associated development software. The
system suffered from poor observability, which affected stu-
dents’ ability to learn with it in negative ways. Programming
errors tended to be of the “crash-and-burn” variety: programs
failed without warning, without providing notice as to where
they crashed, how or why. In the case of the robotic hard-
ware being programmed, this problem was made even worse
because of a variety and intermingling of possible failure
modes. Not only could different types of programming er-
rors cause a robot to fail, but so could various other sorts of
hardware errors:

Hardware Failure. An electrical problem with the hard-
ware of the computer could cause a crash. In this case,
there may still be a software error that lurks behind the
hardware problems.
It is important to note that this failure mode is typ-
ically not a part of computer science curricula. In
most academic courses, students do not worry about
the reliability of the computer hardware itself. In the
robotic projects, however, the computer boards as well
as other robotic hardware (sensors, motors, and me-
chanics) were susceptible to failures. Often, these
problems were intermittent—the worst kind because
the problems became so difficult to trace.

Software Coding Error. A software “typo” (error caused
by mis-typing) or “thinko” (error caused by sloppy
thinking, like substituting a less-than sign when a
greater-than sign is intended) can cause a crash.

Algorithmic Error. The algorithmic error is an incorrect de-
sign of an algorithm to accomplish a certain task given
certain inputs. This mistake does not necessarily cause a
complete failure, but more an unexpected performance.
The inputs may be correct, but the intended output
does not occur because the algorithm for obtaining it
is wrong.

Sensor-related Error. Often a sensor does not perform as
a student expects. The student might create an algo-
rithm that would perform properly if given the sensor
inputs the designer anticipated; the problem arises when
the sensor does not perform as expected. This failure
mode is particularly tricky for a variety of reasons: (1)
students don’t like to think that their algorithm is inad-
equate because the sensor produces anomalous values;
(2) sensor data tends to be noisy in a fashion that is diffi-
cult to model and for which to compensate; (3) students
don’t realize that they don’t understand the sensor.
To further complicate matters, it is often the case that
a given sensor-algorithm mostly works—that is, most
of the time it gives acceptable performance. This error
was commonplace when students used the Assembly
Language controller, because it was difficult to get the

and others like it are minor criticisms of a wonderfully designed
mechanical building kit.

system to display sensor results in a fashion that would
be meaningful to the student.

Because of this variety and interminglingof failure modes,
the experience of working in assembly language was frus-
trating and unrewarding for most students. The most difficult
part of the debugging scenario was that students often did
not know which type of bug they were dealing with, no less
how to fix it. We realized that we would have to provide
a system that not only better supported students’ debugging
efforts, but actively encouraged their curiosity to understand
the robotic phenomena they were exploring. For example,
rather than just hoping that a sensor would work the way
they expected, students should easily be able to construct a
simple experiment to ascertain the behavior of the sensor.

In response to this set of problems, we built the following
features into the hardware and software of the C Language
Controller system:

LCD Character Display Panel. The new board supported
a 15-character LCD display panel. The software we
developed included a programming statement to write
data to the display (both text strings and numeric out-
put). This vastly changed the “observability” of pro-
gram execution: it became easy to add a print statement
to a program and thereby monitor its internal status.
Also, it became much easier to experiment with the
operation of sensors. Students could write a one-line
program to repeatedly print the value of a given sensor to
the display. The robot no longer needed to be connected
to the desktop development computer in order to display
results—students could disconnect the robot from the
computer, bring it to the contest playing table or other
location, and manipulate the robot or conditions in its
environment and directly observe changes to sensors’
values.

“Heartbeat” System Activity Monitor.
On the LCD screen, a small icon continuously flashed
to indicate that the computer board was operating prop-
erly. If there was fatal hardware or software failure,
this “heartbeat” would stop, and the user could tell at a
glance that such a crash had occurred.

Piezo Beeper. An electronic beeper was provided with
simple routines for making beeps of varying pitch and
duration. The assembly language board had included a
beeper, but it was difficult to operate from software and
was not used by students generally. With the new sys-
tem, we saw an explosion of “musical robots” that used
sound output for both entertainment and informational
purposes.

Command Line Interface. The assembly language system
used a batch mode metaphor of programming: first the
program was written, then it was downloaded and run
on the robot. There was no opportunity for the user
to interact with the program when it was running on
the robot. With the C Language Controller, students
could interactively control program execution or display

the value of program values while their program was
running.

While they may seem small, these technology changes
drastically improved the observabilityof the students’ robotic
systems. Students were able to write a little snippet of code
to display the value of a sensor, beep when a particular area of
program code was executed, and tell at a glance that their mi-
croprocessor hardware was operating properly. While their
robots still became complicated, difficult-to-debug systems,
with the technology improvements introduced with the C
Language controller, students had the tools at their disposal
to debug their robots.

Interactivity
Another important criterion of an educational technology is
the degree to which it encourages interaction between the
learner and the ideas embodied by the technology. The
LEGO building system represents perhaps the pinnacle of
interactivity—a pile of LEGO bricks practically begs to be
played with and put together in various ways.

It is through intelligent interaction with a material that
learning occurs. The LEGO system is successful as a peda-
gogical tool because novice builders can express their ideas
directly with the material, evaluating their design concepts
without the need for intermediary representations.

For example, contrast a structural idea expressed in a
LEGO model versus one expressed in a traditional pencil
and paper drawing. The novice student can more readily
evaluate the effectiveness of the idea in the form of a LEGO
model: it can be viewed from any angle, prodded, twisted,
and dropped to test its ruggedness. The drawing, however,
must be carefully analyzed in a cerebral manner, inviting
errors from the novice designer.

It may be argued that for an expert designer, simple draw-
ings are as powerful or more powerful than physical models
as a design tool, particularly in the more conceptual stages
of a design. It is often simpler to sketch an idea than to give
it physical form. Further, the expert designer often has the
ability to hold in his or her own mind the myriad of impli-
cations that each component of a design has on the others.
Therefore the expert does not always need the physicality of
a model to explore options and alternatives. For the novice,
however, the immediacy of a model, particularly one that is
created as part of the ideation process itself, can serve to pro-
vide critical feedback about the effectiveness of the design
ideas.

This criterion was applied to the design of the other com-
ponents of the robot-building kit. The biggest problem with
the software environment of the assembly language system
was its batch-mode metaphor: first the user would write a
program, then assemble it, then download it, and then see if
it worked. In our C language controller system, we incor-
porated an command line interface. Users were then able to
interactively control their robot by typing function calls and
compound statements at the command line.

To highlight this aspect of the system, we named the lan-
guage Interactive C, or IC for short. Most recently, the com-

mand line interface has come to be perceived as anachronis-
tic, with many operating systems and applications now pro-
viding iconic and menu-based objects for interaction with the
computer. Yet the command line is far from having outlived
its usefulness, particularly as a programming tool.

The Interactive C system was a huge improvement over the
batch mode methods of the assembly language programming
software. Not only did the Interactive C system make it easier
for students to write programs and understand them, but it
specifically encouraged a more playful, experimental way of
working with the components of the robot-building kit. It
became possible, for example, to write a one-line program
to display the value of a sensor on the LCD screen. This
encouraged students who were unfamiliar with the operation
of a given sensor to write that one-line program, carry their
robot to the contest playing tables, and experiment with the
robot to see how the sensor responded.

Similarly, writing a short program to test a control idea
(like following the edge of a line on the playing table) be-
came a one-hour propositionrather than an all-day challenge.
The result was that a number of students, particularly those
who were organized enough to give themselves time to play,
built sample robot behaviors (like a robot that would follow
a flashlight) in a manner analogous to the majority of stu-
dents would built sample LEGO models to explore structural
and mechanical ideas. Because of the system’s interactivity,
students were implicitly encouraged to play with sensing,
control, and programming ideas.

Transparency

Related to the issue of levels of abstraction is matter of
transparency of those levels. Given that a system insulates
the user from lower levels of detail, the question remains
of how easily users may explore those other levels if they
desire.

This issue became important to us when we made the
shift from the more primitive, assembly language system,
which insulated the user from little, to the C-language sys-
tem, which abstracted various hardware and software details
from the students. We did not want to discourage interested
students from learning about the lower levels. Quite to the
contrary, we felt it was important that at least their curios-
ity would be piqued and that they would feel an implicit
invitation to “peel away” our layers of abstraction.

There were two reasons for making our materials open in
this manner. The first was to stimulate and support students
with different backgrounds, styles of inquiry, and interests.
If our system was “closed,” then we would shut out students
not interested in the particular abstractions we had selected.
The other reason that we did not want to build a system that
seemed complicated, magical, or otherwise intimidating; we
wanted to encourage learning, not stifle it.

These intuitions were borne out by experience. As men-
tioned earlier, a few students were initially dismayed when
they realized that the Interactive C system shielded them
from the lower hardware and software operation. With our
consent, one student rejected Interactive C outright, and at-

tempted to program his robot in assembly language. Most
encouraging, however, was the multitude of ways in which
students followed up on the paths that we deliberately pro-
vided into the lower levels. These “access roads” included:

Prototyping Areas. Included with the controller board
used with Interactive C was an additional Expansion
Board. This Expansion Board contained some circuit
features that we didn’t consider essential to be placed
on the main board; also, however, it contained a gen-
eral purpose prototyping area. We gave the students
instructional material that showed them how to connect
their own circuits to the main microprocessor controller
using the interface bus and prototyping area provided
on the Expansion Board.

Course Notes. Appropriate documentation played an im-
portant role in giving students access to lower levels of
the robotic system. Most importantly, we made sepa-
rate presentation of “how to” and underlying-theoretical
information in the course notes. This was to let students
quicklyhave the informationavailable needed to use the
technology, so that they could learn by actually exper-
imenting with materials and ideas rather than reading
about them. But, detailed discussions of theory of cir-
cuit operation, motor and battery characteristics, and
control concepts were made available for students to
peruse at their discretion.

IC Binary Feature. In the second year of the Interactive C
system, we introduced a feature that allowed students to
write low-level assembly language code that could be
transparently linked into their main high-level C pro-
grams. This allowed interested students to easily get
underneath the level of abstraction provided by the C
language into low-level microprocessor programming.

To summarize, a critical concern in the development of our
technology was to keep the lower levels of our system open
to those students who were interested in them. This trans-
parency made our materials more versatile as a designer’s
medium, and more pedagogically rich to a student base with
varied backgrounds and interests.

CONCLUSION

The technology in use in the course has greatly evolved over
the four years. As both a designer of the course technology
and a teacher of the course itself, I have had the opportunity
to reflect on the effects of different materials on the students’
work. The following observations come from my analysis
of both the development of our course materials and the
experiences of the students in the class.

Design environments and materials should
encourage playful design and creative exploration.

Part of the success of the course is due to the ease of use
of the robot-building kit. The majority of students, partic-
ularly freshmen and sophomores, have not had a great deal
of hands-on experience with design and engineering—most
of their knowledge is “textbook” knowledge. As such, most

students are likely to be hesitant and somewhat fearful when
it comes to engaging in a practical, hands-on engineering
experience—unless the materials are so friendly and easy to
use that the students are not deterred.

Further, if a system actively encourages playful explo-
ration and iterative design, then a whole new avenue of de-
sign work becomes possible. For example, the familiar and
friendly LEGO Technics kit is adored by the students. Al-
though it is complex and rich, students are anxious to explore
and learn by playing with the material.

In contrast, academic design teaching is often predicated
on a “top-down” model of the design process, in which needs
are analyzed, constraints are determined, and an optimiza-
tion process used to guide the solution (see for example
[2]). While professional designer use these practices, there
is growing evidence that this is not the preferred working
style for many designers. For example, Turkle and Papert [8]
revive Levi-Strauss’ term “bricolage” to describe a “bottom-
up” method of designing software:

While hierarchy and abstraction are valued by
the structured programmers’ planner’s heuristic,
bricoleur programmers prefer negotiation and re-
arrangment of their materials.

Donald Schön, the design theorist, studies the work of
professional designers from a variety of fields, including
engineering. Schön characterizes design as “a conversation
with the materials of the situation” [7]:

There are more variables—kinds of possible
moves, norms, and interrelationships of these—
than can be represented in a finite model. Because
of this complexity, the designer’s moves tend, hap-
pily or unhappily, to produce consequences other
than those intended. When this happens, the de-
signer may take account of the unintended changes
he has made in the situation by forming new ap-
preciations and understanding and making new
moves. He shapes the situation in accordance with
his initial appreciation of it, the situation “talks
back,” and he responds to the situation’s back-
talk.3

In the Robot Design course, students are free to choose
the style of design which either suits them best or with which
they are most familiar. While some students do take a “top
down” approach towards their projects, enough do not so
that we as educators should take notice. Most students’
projects evolve iteratively and in a piecemeal fashion: they
build on top of their previous efforts, sometimes pausing
to re-design a previously working mechanism or integrate
several previously separate ones. I believe that for these
students, the ideas and concepts they are working with are
quite unfamiliar, and by giving them the opportunity to “mess
around” with the ideas, they are getting a chance to become
truly comfortable with the concepts without the pressure of
producing a finished work at first.

3The Reflective Practitioner, pp. 79.

Materials should provide a useful level of
abstraction, but not limit the students’

explorations.

The robot design kit developed for the students’ use is
“user-friendly” because it provides a clean level of abstrac-
tion. Students do not need to know how a light sensor func-
tions in order to build one and use it effectively. They do
not need to know the low-level details of the microprocessor
controller in order to write C programs for it. They do not
need to know how the servo motor control is implemented in
order to use the motor.

These design decisions were conscious as we were de-
veloping the students’ kit. It was more important that the
students have an opportunity to use these materials, and get
excited about the creative potential of these technologies,
than it was necessarily that they understand the low-level
details of how the various technologies function.

Yet, at the same time, it was important not to limit the
students’ explorations. If a student wanted to learn the detail
of the interface for a sensor, so that she or he could develop
a better sensor, an opportunity should be available. Simi-
larly for any number of topics which were in fact explored
by various interested students: new motor control hardware,
alternative programming languages, additional digital hard-
ware for more sensors, etc.

In this way, the course materials and also the course phi-
losophy accomodates a wide range of students and their in-
terests. If some students want to concentrate in some areas
while ignoringsome others, they are encouraged and granted
the opportunity to do so.

Students know the difference between authentic
learning situations and contrived pedagogical

methods.

One of the great strengths of the course is the contest,
which is also its culmination. Students take a great deal
of pride in readying their robots for this event; many of
them literally stay up for two or three consecutive nights in
attempts to get their robots in the best possible operating
condition.

While a competitive situation is not without its drawbacks,
I believe that the contest lends an authenticity to the design
work that does not usually occur in academic learning sit-
uations. Students are not working for a grade; the course
is ungraded, taken for pass-fail credit, if for credit at all.
Students are responding to their own satisfaction in engi-
neering, and they are working for the genuine admiration of
their peers and teachers: everyone at an engineering school
“loves a good hack.”

The contest also forces students to confront the limitations
of their design. Were it not for the performance situation,
few students would realize how unreliable their designs ac-
tually are. Most students, while testing their machines, do
not realize that one successful performance, which might be
contingent on the correct operation of a dozen different ac-
tions, does not imply that those dozen actions can be relied

upon. Yet many do realize this after their machines have per-
formed in the actual contest, facing several different types of
opposing robots.

ACKNOWLEDGMENTS

Wanda M. Gleason provided helpful and timely feedback
on the writing of this draft, and also created Figure 6. The
Robot Design project itself was the result of a collaboration
with Pankaj Oberoi, who provided a steadfast organizational
and inspirational role, and Randy Sargent, who co-authored
the technology created for the project.

Microsoft Corp., Motorola, Inc., Polaroid Corp., the
LEGO Group, Methode Inc., Gates Energy Products Inc.,
3M Inc., and Abrams-Gentile Entertainment, Inc. donated
much-appreciated materials and funds to support our work.

The MIT Electrical Engineering and Computer Science
Department and the MIT Media Laboratory were staunch
supporters of this project. I would like to thank Professor
Edith Ackermann, my research advisor, for her generosity,
and Professor Seymour Papert, head of the Epistemology
and Learning Group.

REFERENCES

[1] Harold Abelson and Gerald Jay Sussman. Structure and
Interpretation of Computer Programs. The MIT Press,
Cambridge, Massachusetts, 1985.

[2] Morris Asimow. Introduction to Design. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1962.

[3] Fred G. Martin. The 6.270 Robot Builder’s Guide. Epis-
temology and Learning Manual 1, MIT Media Labora-
tory, 20 Ames Street Room E15–315, Cambridge, MA
02139, 1992. Epistemology and Learning Publications.

[4] Fred G. Martin. Circuits to Control: Learning Engi-
neering by Designing LEGO Robots. PhD thesis, Mas-
sachusetts Institute of Technology, MIT Media Labora-
tory, 20 Ames Street Room E15–315, Cambridge, MA
02139, 1994.

[5] Seymour Papert. Constructionism: A new opportu-
nity for elementary science education. Proposal to the
National Science Foundation. MIT Media Laboratory,
1986.

[6] Henry Petroski. To Engineer is Human: The Role of
Failure in Successful Design. St. Martin’s Press, New
York, 1982–1985.

[7] Donald A. Schön. The Reflective Practitioner: How
Professionals Think in Action. Basic Books, Inc., 1982.

[8] Sherry Turkle and Seymour Papert. Epistemological
pluralism: Styles and voices within the computer culture.
Signs, 16(1), 1990.

	Abstract
	Contest Design
	Strategic Diversity
	Game Elements
	Challenge Level
	The Social Message

	Hardware and Software Design
	Levels of Abstraction
	Observability
	Interactivity
	Transparency

	Conclusion
	Acknowledgments
	References

