Data Mining

Association Rules: Advanced Concepts and Algorithms

Continuous and Categorical Attributes

How to apply association analysis formulation to non-asymmetric binary variables?

<table>
<thead>
<tr>
<th>Session Id</th>
<th>Country</th>
<th>Session Length (sec)</th>
<th>Number of Web Pages viewed</th>
<th>Gender</th>
<th>Browser Type</th>
<th>Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA</td>
<td>962</td>
<td>8</td>
<td>Male</td>
<td>IE</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>811</td>
<td>10</td>
<td>Female</td>
<td>Netscape</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>2125</td>
<td>45</td>
<td>Female</td>
<td>Mozilla</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Germany</td>
<td>596</td>
<td>4</td>
<td>Male</td>
<td>IE</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Australia</td>
<td>123</td>
<td>9</td>
<td>Male</td>
<td>Mozilla</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Example of Association Rule:

\{(\text{Number of Pages} \in [5,10]) \land (\text{Browser}=\text{Mozilla})\} \rightarrow \{\text{Buy} = \text{No}\}
Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables

- Introduce a new “item” for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Netscape
 - Browser Type = Mozilla

Handling Categorical Attributes

- Potential Issues
 - What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values

 - What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items
Handling Continuous Attributes

- Different kinds of rules:
 - Age $\in [21,35) \land$ Salary $\in [70k, 120k) \rightarrow$ Buy
 - Salary $\in [70k, 120k) \land$ Buy \rightarrow Age: $\mu=28$, $\sigma=4$

- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based

Handling Continuous Attributes

- Use discretization
 - Equal-width binning
 - Equal-depth binning
 - Clustering
Discretization Issues

- **Size of the discretized intervals affect support & confidence**

 \[
 \text{Refund} = \text{No}, \ (\text{Income} = 51,250) \rightarrow \text{Cheat} = \text{No} \\
 \text{Refund} = \text{No}, \ (60K \leq \text{Income} \leq 80K) \rightarrow \text{Cheat} = \text{No} \\
 \text{Refund} = \text{No}, \ (0K \leq \text{Income} \leq 1B) \rightarrow \text{Cheat} = \text{No} \\
 \]

 - If intervals too small
 - may not have enough support
 - If intervals too large
 - may not have enough confidence

- **Potential solution: use all possible intervals**

Discretization Issues

- **Execution time**

 - If intervals contain \(n\) values, there are on average \(O(n^2)\) possible ranges

- **Too many rules**

 \[
 \text{Refund} = \text{No}, \ (\text{Income} = 51,250) \rightarrow \text{Cheat} = \text{No} \\
 \text{Refund} = \text{No}, \ (51K \leq \text{Income} \leq 52K) \rightarrow \text{Cheat} = \text{No} \\
 \text{Refund} = \text{No}, \ (50K \leq \text{Income} \leq 60K) \rightarrow \text{Cheat} = \text{No} \\
 \]
Approach by Srikant & Agrawal

- Preprocess the data
 - Discretize attribute using equi-depth partitioning
 - Use *partial completeness measure* to determine number of partitions
 - Merge adjacent intervals as long as support is less than max-support

- Apply existing association rule mining algorithms

- Determine interesting rules in the output

Approach by Srikant & Agrawal

- Partial completeness measure

 C: frequent itemsets obtained by considering all ranges of attribute values
 P: frequent itemsets obtained by considering all ranges over the partitions

 P is *K-complete* w.r.t C if $P \subseteq C$, and $\forall X \subseteq C, \exists X' \in P$ such that:
 1. X' is a generalization of X and support ($X' \leq K \times $ support(X))

 ($K \geq 1$)
 2. $\forall Y \subseteq X, \exists Y' \subseteq X'$ such that support ($Y' \leq K \times $ support(Y))

 Given K (*partial completeness level*), can determine number of intervals (N)

© Tan, Steinbach, Kumar

Introduction to Data Mining
Statistics-based Methods

- Example:
 Browser=Mozilla ∧ Buy=Yes → Age: μ=23
- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.
- Approach:
 - Withhold the target variable from the rest of the data
 - Apply existing frequent itemset generation on the rest of the data
 - For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule

Statistics-based Methods

- How to determine whether an association rule is interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:
 \[A \Rightarrow B: \mu \text{ versus } \overline{A} \Rightarrow B: \mu' \]
 - Statistical hypothesis testing:
 - Null hypothesis: H0: \(\mu' = \mu + \Delta \)
 - Alternative hypothesis: H1: \(\mu' > \mu + \Delta \)
 - Z has zero mean and variance 1 under null hypothesis
 \[Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]
Statistics-based Methods

- Example:
 - \(r: \text{Browser}=\text{firefox} \rightarrow \text{Age}: \mu=23 \)
 - Rule is interesting if difference between \(\mu \) and \(\mu' \) is greater than 5 years (i.e., \(\Delta = 5 \))
 - For \(r \), suppose \(n_1 = 50, \mu = 23, s_1 = 3.5 \)
 - For \(r' \) (complement): \(n_2 = 250, \mu' = 30, s_2 = 6.5 \)
 - \[Z = \frac{\mu' - \mu - \Delta}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = \frac{30 - 23 - 5}{\sqrt{3.5^2/50 + 6.5^2/250}} = 3.11 \]
 - For 1-sided test at 95% confidence level, critical \(Z \)-value for rejecting null hypothesis is 1.64.
 - Since \(Z \) is greater than 1.64, \(r \) is an interesting rule

Min-Apriori (Han et al)

Document-term matrix:

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Example:
W1 and W2 tends to appear together in the same document
Min-Apriori

- Data contains only continuous attributes of the same "type"
 - e.g., frequency of words in a document

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

- Potential solution:
 - Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of words

How to determine the support of a word?

- If we simply sum up its frequency, support count will be greater than total number of documents!
 - Normalize the word vectors
 - Each word has a total support equals to 1.0

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2.0</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>D2</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>D3</td>
<td>2.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>D4</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>D5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Normalize
Min-Apriori

- New definition of support:

\[
\text{sup}(C) = \sum_{i \notin C} \min_j D(i, j)
\]

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.40</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>D3</td>
<td>0.40</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D5</td>
<td>0.20</td>
<td>0.17</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Example:
Sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17

Anti-monotone property of Support

Example:
Sup(W1) = 0.4 + 0 + 0.4 + 0 + 0.2 = 1
Sup(W1, W2) = 0.33 + 0 + 0.4 + 0 + 0.17 = 0.9
Sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17
Concept Hierarchy

Multi-level Association Rules

Why should we incorporate concept hierarchy?

- Rules at lower levels may not have enough support to appear in any frequent itemsets

- Rules at lower levels of the hierarchy are overly specific

 e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc. are indicative of association between milk and bread
Multi-level Association Rules

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X_1 and X_2, then $\text{sup}(X) \leq \text{sup}(X_1) + \text{sup}(X_2)$

 - If $\text{sup}(X_1 \cup Y_1) \geq \text{minsup}$, and X is parent of X_1, Y is parent of Y_1 then $\text{sup}(X \cup Y_1) \geq \text{minsup}$, $\text{sup}(X_1 \cup Y) \geq \text{minsup}$

 - If $\text{conf}(X_1 \Rightarrow Y_1) \geq \text{minconf}$, then $\text{conf}(X_1 \Rightarrow Y) \geq \text{minconf}$

Multi-level Association Rules

- Approach 1:
 - Extend current association rule formulation by augmenting each transaction with higher level items

 Original Transaction: {skim milk, wheat bread}
 Augmented Transaction: {skim milk, wheat bread, milk, bread, food}

- Issues:
 - Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
 - Increased dimensionality of the data
Multi-level Association Rules

- **Approach 2:**
 - Generate frequent patterns at highest level first
 - Then, generate frequent patterns at the next highest level, and so on

- **Issues:**
 - I/O requirements will increase dramatically because we need to perform more passes over the data
 - May miss some potentially interesting cross-level association patterns

Sequence Data

Sequence Database:

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>6, 1</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>4, 5, 6</td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>7, 8, 1, 2</td>
</tr>
<tr>
<td>C</td>
<td>28</td>
<td>1, 6</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>1, 8, 7</td>
</tr>
</tbody>
</table>

Timeline:

- **Object A:**
 - Events: 2, 3, 5, 6, 1
- **Object B:**
 - Events: 4, 5, 6, 2, 7, 8, 1, 6
- **Object C:**
 - Events: 1, 7, 8
Examples of Sequence Data

<table>
<thead>
<tr>
<th>Sequence Database</th>
<th>Sequence</th>
<th>Element (Transaction)</th>
<th>Event (Item)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Purchase history of a given customer</td>
<td>A set of items bought by a customer at time t</td>
<td>Books, diary products, CDs, etc</td>
</tr>
<tr>
<td>Web Data</td>
<td>Browsing activity of a particular Web visitor</td>
<td>A collection of files viewed by a Web visitor after a single mouse click</td>
<td>Home page, index page, contact info, etc</td>
</tr>
<tr>
<td>Event data</td>
<td>History of events generated by a given sensor</td>
<td>Events triggered by a sensor at time t</td>
<td>Types of alarms generated by sensors</td>
</tr>
<tr>
<td>Genome sequences</td>
<td>DNA sequence of a particular species</td>
<td>An element of the DNA sequence</td>
<td>Bases A,T,G,C</td>
</tr>
</tbody>
</table>

Formal Definition of a Sequence

- A sequence is an ordered list of **elements** (transactions)

 \[s = \langle e_1, e_2 \ldots e_n \rangle \]

 - Each element contains a collection of **events** (items)

 \[e_j = \{ i_1, i_2, \ldots, i_k \} \]

 - Each element is attributed to a specific time or location

- Length of a sequence, \(|s|\), is given by the number of elements of the sequence

- A **k-sequence** is a sequence that contains \(k\) events (items)
Examples of Sequence

- Web sequence:
 \(<\{\text{Homepage}\} \{\text{Electronics}\} \{\text{Digital Cameras}\} \{\text{Canon Digital Camera}\} \{\text{Shopping Cart}\} \{\text{Order Confirmation}\} \{\text{Return to Shopping}\}>\)

- Sequence of books checked out at a library:
 \(<\{\text{Fellowship of the Ring}\} \{\text{The Two Towers}\} \{\text{Return of the King}\}>\)

- Sequence of courses:
 \(<\{\text{Computing I, Calculus I}\} \{\text{Computing II, Calculus II}\} \{\text{Computing III, Assembly, Discrete I, Logical Design}\} \{\text{Computing IV, Discrete II, Probability}\}>\)

Formal Definition of a Subsequence

- A sequence \(<a_1, a_2 \ldots a_n>\) is contained in another sequence \(<b_1, b_2 \ldots b_m>\) \((m \geq n)\) if there exist integers \(i_1 < i_2 < \ldots < i_n\) such that \(a_i \subseteq b_{i_1}, a_2 \subseteq b_{i_1}, \ldots, a_n \subseteq b_{i_n}\)

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<{2,4} {3,5,6}{8}>)</td>
<td>(<{2} {3,5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(<{1,2} {3,4}>)</td>
<td>(<{1} {2}>)</td>
<td>No</td>
</tr>
<tr>
<td>(<{2,4} {2,4} {2,5}>)</td>
<td>(<{2} {4}>)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- The support of a subsequence \(w\) is defined as the fraction of data sequences that contain \(w\)

- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is \(\geq\) \(\text{minsup}\))
Sequential Pattern Mining: Definition

- Given:
 - a database of sequences
 - a user-specified minimum support threshold, \(\text{minsup} \)

- Task:
 - Find all subsequences with support \(\geq \text{minsup} \)

Sequential Pattern Mining: Example

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1,2,4</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2,3</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2,4,5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>3,4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2,4,5</td>
</tr>
</tbody>
</table>

\(\text{minsup} = 50\% \)

Examples of Frequent Subsequences:

\(< \{1,2\} \rangle \quad s=60\% \\
\(< \{2,3\} \rangle \quad s=60\% \\
\(< \{2,4\}\rangle \quad s=80\% \\
\(< \{3\} \{5\}\rangle \quad s=80\% \\
\(< \{1\} \{2\} \rangle \quad s=80\% \\
\(< \{2\} \{2\} \rangle \quad s=60\% \\
\(< \{1\} \{2,3\} \rangle \quad s=60\% \\
\(< \{2\} \{2,3\} \rangle \quad s=60\% \\
\(< \{1,2\} \{2,3\} \rangle \quad s=60\% \)
Sequential Pattern Mining: Challenge

- Given a sequence: \(<\{a \ b\} \ \{c \ d \ e\} \ \{f\} \ \{g \ h \ i\}>\)
 - Examples of subsequences:
 \(<\{a\} \ \{c \ d \} \ \{f\} \ \{g\}>\), \(<\{c \ d \ e\}>\), \(<\{b\} \ \{g\}>\), etc.

- How many k-subsequences can be extracted from a given n-sequence?

 \(<\{a \ b\} \ \{c \ d \ e\} \ \{f\} \ \{g \ h \ i\}>\) \ n = 9
 \(k=4:\)
 \[
 \begin{array}{cccc}
 Y & _ & _ & Y \\
 Y & _ & _ & Y \\
 _ & _ & _ & Y \\
 \end{array}
 \]
 Answer:
 \[
 \binom{n}{k} = \binom{9}{4} = 126
 \]

Extracting Sequential Patterns

- Given n events: \(i_1, i_2, i_3, \ldots, i_n\)

- Candidate 1-subsequences:
 \(<\{i_1\}>, \ <\{i_2\}>, \ <\{i_3\}>, \ldots, \ <\{i_n\}>\)

- Candidate 2-subsequences:
 \(<\{i_1, i_2\}>, \ <\{i_1, i_3\}>, \ldots, \ <\{i_1\} \ \{i_3\}>, \ <\{i_1\} \ \{i_2\}>, \ldots, \ <\{i_{n-1}\} \ \{i_n\}>\)

- Candidate 3-subsequences:
 \(<\{i_1, i_2, i_3\}>, \ <\{i_1, i_2, i_4\}>, \ldots, \ <\{i_1\} \ \{i_2\} \ \{i_3\}>, \ <\{i_1\} \ \{i_2\} \ \{i_4\}>, \ldots, \ <\{i_1\} \ \{i_2\} \ \ldots \ \{i_{n-1}\} \ \{i_n\}>\), \ldots
Generalized Sequential Pattern (GSP)

- **Step 1:**
 - Make the first pass over the sequence database \(D \) to yield all the 1-element frequent sequences.

- **Step 2:**
 Repeat until no new frequent sequences are found
 - **Candidate Generation:**
 - Merge pairs of frequent subsequences found in the \((k-1)\)th pass to generate candidate sequences that contain \(k \) items.
 - **Candidate Pruning:**
 - Prune candidate \(k \)-sequences that contain infrequent \((k-1)\)-subsequences.
 - **Support Counting:**
 - Make a new pass over the sequence database \(D \) to find the support for these candidate sequences.
 - **Candidate Elimination:**
 - Eliminate candidate \(k \)-sequences whose actual support is less than \(\text{minsup} \).

Candidate Generation

- **Base case \((k=2)\):**
 - Merging two frequent 1-sequences \(<\{i_1\}\>\) and \(<\{i_2\}\>\) will produce two candidate 2-sequences: \(<\{i_1\} \{i_2\}>\) and \(<\{i_1, i_2\}>\).

- **General case \((k>2)\):**
 - A frequent \((k-1)\)-sequence \(w_1 \) is merged with another frequent \((k-1)\)-sequence \(w_2 \) to produce a candidate \(k \)-sequence if the subsequence obtained by removing the first event in \(w_1 \) is the same as the subsequence obtained by removing the last event in \(w_2 \).
 - The resulting candidate after merging is given by the sequence \(w_1 \) extended with the last event of \(w_2 \).
 - If the last two events in \(w_2 \) belong to the same element, then the last event in \(w_2 \) becomes part of the last element in \(w_1 \).
 - Otherwise, the last event in \(w_2 \) becomes a separate element appended to the end of \(w_1 \).
Candidate Generation Examples

- Merging the sequences \(w_1 = \langle \{1\} \{2\} \{3\} \{4\} \rangle \) and \(w_2 = \langle \{2\} \{3\} \{4\} \{5\} \rangle \) will produce the candidate sequence \(\langle \{1\} \{2\} \{3\} \{4\} \{5\} \rangle \) because the last two events in \(w_2 \) (4 and 5) belong to the same element.

- Merging the sequences \(w_1 = \langle \{1\} \{2\} \{3\} \{4\} \rangle \) and \(w_2 = \langle \{2\} \{3\} \{4\} \{5\} \rangle \) will produce the candidate sequence \(\langle \{1\} \{2\} \{3\} \{4\} \{5\} \rangle \) because the last two events in \(w_2 \) (4 and 5) do not belong to the same element.

- We do not merge the sequences \(w_1 = \langle \{1\} \{2\} \{6\} \{4\} \rangle \) and \(w_2 = \langle \{2\} \{4\} \{5\} \rangle \) to produce the candidate \(\langle \{1\} \{2\} \{6\} \{4\} \{5\} \rangle \).

GSP Example

Frequent 3-sequences:

- \(\langle \{1\} \{2\} \{3\} \rangle \)
- \(\langle \{1\} \{2\} \{5\} \rangle \)
- \(\langle \{1\} \{5\} \{3\} \rangle \)
- \(\langle \{2\} \{3\} \{4\} \rangle \)
- \(\langle \{2\} \{5\} \{3\} \rangle \)
- \(\langle \{3\} \{4\} \{5\} \rangle \)
- \(\langle \{5\} \{3\} \{4\} \rangle \)

Candidate Generation:

- \(\langle \{1\} \{2\} \{3\} \{4\} \rangle \)
- \(\langle \{1\} \{2\} \{5\} \{3\} \rangle \)
- \(\langle \{1\} \{5\} \{3\} \{4\} \rangle \)
- \(\langle \{2\} \{3\} \{4\} \{5\} \rangle \)
- \(\langle \{2\} \{5\} \{3\} \{4\} \rangle \)

Candidate Pruning:

- \(\langle \{1\} \{2\} \{5\} \{3\} \rangle \)
Timing Constraints (I)

x_g: max-gap
n_g: min-gap
m_s: maximum span

$x_g = 2$, $n_g = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8}> | < {6} {5}> | Yes
< {1} {2} {3} {4} {5}> | < {1} {4}> | No
< {1} {2,3} {3,4} {4,5}> | < {2} {3} {5}> | Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}> | < {1,2} {5}> | No

Apriori Principle for Sequence Data

Suppose:
$x_g = 1$ (max-gap)
$n_g = 0$ (min-gap)
$m_s = 5$ (maximum span)

$\text{minsup} = 60\%$

$\langle{2} \{5}\rangle$ support = 40%

but

$\langle{2} \{3\} \{5}\rangle$ support = 60%

Problem exists because of max-gap constraint

No such problem if max-gap is infinite
Contiguous Subsequences

- s is a contiguous subsequence of $w = \langle e_1 \rangle \langle e_2 \rangle \ldots \langle e_k \rangle$

 if any of the following conditions hold:

 1. s is obtained from w by deleting an item from either e_1 or e_k
 2. s is obtained from w by deleting an item from any element e_i that contains more than 2 items
 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)

- Examples: $s = \langle \{1\} \{2\} \rangle$

 - is a contiguous subsequence of $\langle \{1\} \{2\} \{3\} \rangle$, $\langle \{1\} \{2\} \{3\} \rangle$, and $\langle \{3\} \{4\} \{1\} \{2\} \{3\} \{4\} \rangle$

 - is not a contiguous subsequence of $\langle \{1\} \{3\} \{2\} \rangle$ and $\langle \{2\} \{1\} \{3\} \{2\} \rangle$

Modified Candidate Pruning Step

- Without maxgap constraint:

 - A candidate k-sequence is pruned if at least one of its $(k-1)$-subsequences is infrequent

- With maxgap constraint:

 - A candidate k-sequence is pruned if at least one of its contiguous $(k-1)$-subsequences is infrequent
Timing Constraints (II)

\[
\begin{align*}
\{A, B\} & \quad \{C\} & \quad \{D, E\} \\
\leq x_g & \quad > n_g & \quad \leq m_s \\
\leq ws & \\
\end{align*}
\]

- \(x_g\): max-gap
- \(n_g\): min-gap
- \(ws\): window size
- \(m_s\): maximum span

Data sequence	Subsequence	Contain?
< \{2,4\} \{3,5,6\} \{4,7\} \{4,6\} \{8\} > | < \{3\} \{5\} > | No |
< \{1\} \{2\} \{3\} \{4\} \{5\} > | < \{1,2\} \{3\} > | Yes |
< \{1,2\} \{3\} \{3,4\} \{4,5\} > | < \{1,2\} \{3,5\} > | Yes |

\(x_g = 1, n_g = 0, ws = 1, m_s = 5\)

Modified Support Counting Step

- Given a candidate pattern: \(<\{a, c\}>\)
 - Any data sequences that contain
 - <\{a c\} ... >,
 - <\{a\} ... {c}...> (where \(time(\{c\}) - time(\{a\}) \leq ws\))
 - <\{c\} ... \{a\} ...> (where \(time(\{a\}) - time(\{c\}) \leq ws\))

will contribute to the support count of candidate pattern
Other Formulation

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals

- Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining

General Support Counting Schemes

Assume:
- \(x_g = 2 \) (max-gap)
- \(n_g = 0 \) (min-gap)
- \(ws = 0 \) (window size)
- \(m_s = 2 \) (maximum span)
Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

(a) Labeled Graph
(b) Subgraph
(c) Induced Subgraph
Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - What is k?
Challenges...

- **Support:**
 - number of graphs that contain a particular subgraph

- **Apriori principle still holds**

- **Level-wise (Apriori-like) approach:**
 - **Vertex growing:**
 - k is the number of vertices
 - **Edge growing:**
 - k is the number of edges

Vertex Growing

G1

G2

G3 = join(G1,G2)

\[
M_{G_1} = \begin{pmatrix}
0 & p & p & q \\
p & 0 & r & 0 \\
p & r & 0 & 0 \\
q & 0 & 0 & 0
\end{pmatrix}
\]

\[
M_{G_2} = \begin{pmatrix}
0 & p & p & 0 \\
p & 0 & r & 0 \\
p & r & 0 & r \\
0 & 0 & r & 0
\end{pmatrix}
\]

\[
M_{G_3} = \begin{pmatrix}
0 & p & p & 0 & q \\
p & 0 & r & 0 & 0 \\
p & r & 0 & r & 0 \\
0 & 0 & r & 0 & 0 \\
q & 0 & 0 & 0 & 0
\end{pmatrix}
\]
Edge Growing

\[G_1 + G_2 = G_3 = \text{join}(G_1, G_2) \]

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - Use frequent \((k-1)\)-subgraphs to generate candidate \(k\)-subgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent \((k-1)\)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate \(k\)-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues
Example: Dataset

\[
\begin{array}{cccccc}
\text{G1} & \text{G2} & \text{G3} & \text{G4} \\
\hline
(a,b,p) & (a,b,q) & (a,b,r) & (a,b,p) & (a,b,q) & (b,c,r) & \ldots & (d,e,r) \\
\hline
\text{G1} & 1 & 0 & 0 & 0 & 1 & \ldots & 0 \\
\text{G2} & 1 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\text{G3} & 0 & 0 & 1 & 1 & 0 & \ldots & 0 \\
\text{G4} & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\end{array}
\]

Example

Minimum support count = 2

- **k=1**
 - Frequent Subgraphs: a, b, c, d, e

- **k=2**
 - Frequent Subgraphs: a, p, b, q, c, p, d, e, b, r, d

- **k=3**
 - Candidate Subgraphs: a, p, b, r, d, d, p, c, p, c

 (Pruned candidate)
Candidate Generation

- In Apriori:
 - Merging two frequent k-itemsets will produce a candidate $(k+1)$-itemset

- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent k-subgraphs may produce more than one candidate $(k+1)$-subgraph

Multiplicity of Candidates (Vertex Growing)

\[
\begin{bmatrix}
0 & p & p & q \\
p & 0 & r & 0 \\
p & r & 0 & 0 \\
q & 0 & 0 & 0 \\
\end{bmatrix}
\] + \[
\begin{bmatrix}
0 & p & p & 0 \\
p & 0 & r & 0 \\
p & r & 0 & r \\
0 & 0 & r & 0 \\
\end{bmatrix}
\] = \[
\begin{bmatrix}
0 & p & p & 0 \\
p & 0 & r & 0 \\
p & r & 0 & r \\
0 & 0 & r & 0 \\
q & 0 & 0 & ? \\
\end{bmatrix}
\]
Multiplicity of Candidates (Edge growing)

- **Case 1:** identical vertex labels

 ![Diagram](image1)

 Core: The (k-1) subgraph that is common between the joint graphs

- **Case 2:** Core contains identical labels

 ![Diagram](image2)
Multiplicity of Candidates (Edge growing)

- Case 3: Core multiplicity

![Graph showing edge growing](image)

Adjacency Matrix Representation

<table>
<thead>
<tr>
<th></th>
<th>A(1)</th>
<th>A(2)</th>
<th>A(3)</th>
<th>A(4)</th>
<th>B(5)</th>
<th>B(6)</th>
<th>B(7)</th>
<th>B(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A(2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A(3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A(4)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B(5)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B(6)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B(7)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B(8)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- The same graph can be represented in many ways

![Adjacency matrix](image)
Graph Isomorphism

- A graph is isomorphic if it is topologically equivalent to another graph

![Graphs](image)

Test for graph isomorphism is needed:
- During candidate generation step, to determine whether a candidate has been generated
- During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
- During candidate counting, to check whether a candidate is contained within another graph
Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - use largest lexicographic value adjacency matrix

\[
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]

String: 001000111010110
Canonical: 011101011001000

Infrequent Patterns

- An infrequent pattern is an itemset or a rule whose support is less than the \textit{minsup} threshold.
- Interesting infrequent patterns are obtained by eliminating all infrequent itemsets that are not negatively correlated.
Negatively Correlated Patterns

- An itemset X is negatively correlated if
 \[s(X) < \prod_{j=1}^{k} s(x_j) \]

- An associate rule $X \rightarrow Y$ is negatively correlated if
 \[s(X \cup Y) < s(X) s(Y) \]
 where X and Y are disjoint itemsets.

Negative Patterns

- Let $I = \{i_1, i_2, \ldots, i_d\}$ be a set of items. A negative item \bar{i}_k, denotes the absence of item i_k from a given transaction.

- A negative itemset X is an itemset that has the following properties: (1) $X = A \cup \overline{B}$, where A is a set of positive items, \overline{B} is a set of negative items, $|\overline{B}| \geq 1$, and (2) $s(X) \geq \text{minsup}$
Mining Negative Patterns

- Support of an itemset $X \cup \bar{Y}$

$$s(X \cup Y) = s(X) + \sum_{i=1}^{n} \sum_{Z \subseteq Y, |Z| = i} \{(-1)^i \times s(X \cup Z)\}$$

Example:

$$s(\{p, q, r\}) = s(\{p\}) - s(\{p, q\}) + s(\{p, r\}) + s(\{p, q, r\})$$

<table>
<thead>
<tr>
<th>${p}$</th>
<th>${p, q}$</th>
<th>${p, r}$</th>
<th>${p, q, r}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s(p)</td>
<td>s(p, q)</td>
<td>s(p, r)</td>
</tr>
<tr>
<td>2</td>
<td>s(p, q)</td>
<td>s(p, r)</td>
<td>s(p, q, r)</td>
</tr>
<tr>
<td>3</td>
<td>s(p, r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>s(p, q, r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$s(\{p, q, r\}) = 4 - 2 + 1 = 1$
$s(\{p, q, r\}) = 5 - 3 + 2 = 1$