Divide-and-conquer approach

Outline

- What’s divide-and-conquer
- How to analyze a divide-and-conquer algorithm
- Examples: merge sort, binary search
What is divide and conquer

- A technique for designing algorithms that decompose instance into smaller sub-instances of the same problem
 - Solving the sub-instances independently
 - Combining the sub-solutions to obtain the solution of the original instance

Divide-and-conquer

- basic steps:
 - **divide** the problem into sub-problems similar to original problem but smaller in size
 - **conquer** the sub-problems recursively
 - **combine** solutions to create solution to original problem
Merge Sort Algorithm

- **Divide**: divide \(n \)-element sequence into two sub-sequences of \(n/2 \) elements each
- **Conquer**: sort two sub-sequences recursively using merge sort
- **Combine**: Merge the two sorted sub-sequences to produce the sorted answer

Merge-Sort \(A[1..n] \)

1. if \(n = 1 \), done.
2. Recursively sort \(A[1..\lceil n/2 \rceil] \) and \(A[\lceil n/2 \rceil + 1.. n] \)
3. Merge the two sorted lists
Merging Two Sorted Lists

- choose the smaller element of the two lists
- remove it from list and put it into a list
- repeat previous steps

Merge sort: top down

Ad-hoc sort for each small instance
Merge sort: top down

Merge two arrays
Merge two arrays

Merge two arrays

2 3 5 7

1 4 5 6 9

1 2
Merge two arrays

2 3 5 7
2 3 5 7 1 4 5 6 9
1 2 3

Merge two arrays

2 3 5 7
2 3 5 7 1 4 5 6 9
1 2 3 4
Merge two arrays

2 3 5 7 1 4 5 6 9

1 2 3 4 5

Merge two arrays

2 3 5 7 1 4 5 6 9

1 2 3 4 5 5
Merge two arrays

2 3 5 7 1 4 5 6 9

1 2 3 4 5 5 6

Merge two arrays

2 3 5 7 1 4 5 6 9

1 2 3 4 5 5 6 7
Merge two arrays

Merge Sort

Diagram:
- Initial array: 1 2 3 4 5 6 7 8
- Sorted array:
 - First merge: 1 2 3 4 5 6 7 8
 - Second merge: 1 2 3 4 5 6 7 8
 - Third merge: 1 2 3 4 5 6 7 8

Steps:
1. Merge two smaller arrays.
2. Repeat the merge process until the array is sorted.

Algorithm:
- Divide the array into halves.
- Recursively sort the halves.
- Merge the sorted halves.
Analyzing Merge Sort

\[T(n) \text{ Merge-Sort } A[1..n] \]

\[\Theta(1) \text{ if } n = 1, \text{ done.} \]

\[T\left(\lceil n/2 \rceil \right) + T\left(\lfloor n/2 \rfloor \right) \sim 2T\left(\frac{n}{2}\right) \]

\[\Theta(n) \text{ 3. Merge the two sorted lists} \]

Recurrence:

\[T(n) = \begin{cases}
\Theta(1), & \text{if } n = 1 \\
2T(n/2) + \Theta(n), & \text{if } n > 1
\end{cases} \]

Recursion Tree

\[T(n) = \begin{cases}
c, & \text{if } n = 1 \\
2T(n/2) + cn, & \text{if } n > 1
\end{cases} \]

\[T(n) = cn \lg n + cn = \Theta(n \lg n) \]
Recursion Tree

Three conditions to be considered

- When to use the basic sub-algorithm
- Efficient decomposition and recombination
- The sub-instances must be roughly the same size

A general template

```
DC(x)
{
    if (x is sufficiently small or simple)
        adhoc(x); // use a basic sub-algorithm
    decompose x into small instances x[0],..,x[l-1]; // divide
    for (i=0; i<l; i++) //conquer
        s[i] = DC(x[i]);
    combine s[0],.., s[l-1] to obtain solution s for x; // combine
    return s;
}
```
Sequential Search from a sorted sequence

- $T[]$ is a sequence in nondecreasing order
- Find an element in $T[]$

```java
void sequentialSearch(T[], x)
{
  for (i=0; i<n; i++) {
    if (T[i] == x)
      return i;
  }
}
```

Cost: best, worst, average?

Binary Search

- **Divide**: check middle element
- **Conquer**: recursively search 1 subarray
- **Combine**: trivial
Binary Search: Example

3 5 7 8 9 12 15
3 5 7 8 9 12 15
3 5 7 8 9 12 15
3 5 7 8 9 12 15

Cost of binary search

- \(T(n) = 1 \cdot T(n/2) + \Theta(1) \)
- work dividing and combining
- number of sub-problem
- size of sub-problem

\(T(n) = \Theta(\log n) \)