I/O Virtualization and Sharing

Michael Krause (HP, co-chair)
Renato Recio (IBM, co-chair)
Outline

- Virtualization Overview
 - Terminology
 - Single-Root (SR) IOV
 - Multi-Root (MR) IOV
 - Address Translation Services

- Specification Status and Working Schedule to Completion
Terminology
Terminology

- **System Image (SI)**
 - S/W, *e.g.* a guest OS, to which virtual and physical devices can be assigned

- **Virtual Intermediary (VI)**
 - Resource management and event handling component
 - Allocates resources and isolates resources to each SI

- **Translation Agent (TA)**
 - Translates PCI Addresses to platform physical addresses
 - May also provide interrupt remapping for MSI / MSI-X interrupts
 - ATPT provides translations and access rights typically on a per Function identifier basis
Terminology (cont.)

- **Physical Function (PF)**
 - Function that supports SR-IOV
 - Has full configuration space / BAR

- **Virtual Function (VF)**
 - A Function associated with a PF.
 - Shares PF resources
 - Supports SR-IOV capability

- **Multi-Root Aware (MRA)**
 - Supports MR-IOV capability
 - MR provides each Virtual Hierarchy (VH) with its own PCI 32 / 64-bit Memory, I/O, and Configuration Space.
Single-Root (SR) IOV
Example I/O Device Today

- **Attributes:**
 - **Scalability:**
 - Up to 8 PCI Functions with unique configuration space / BAR / etc.
 - ARI Capability enables up to 256 Functions to be supported
 - **Function 0 required to manage shared resource / process shared events**
 - **Interrupt support:**
 - INTx, MSI, MSI-X or combination of MSI and MSI-X
 - **Function dependencies through vendor-specific mechanisms**
 - **Function-specific resource arbitration through vendor-specific mechanisms**
 - **Cannot be shared by more than one SI without VI involvement**
SR-IOV Device

- **Attributes:**
 - **Scalability**
 - Up to ~2^16 Functions
 - ARI enables up to 256
 - IOV enables additional Bus Numbers to be associated
 - Function 0 required
 - Interrupt support - MSI, MSI-X
 - One configuration space / BAR per Function
 - Multiple VF share Function’s resource space
 - Function dependencies through vendor-specific mechanisms
 - Function-specific resource arbitration through vendor-specific mechanisms
 - Can be shared by more than one SI
 - VI responsible for all configuration access
Single-Root PCIM (SR-PCIM)

- **PCIM – PCI Manager**
 - System software that controls configuration, management and error handling of PFs and VFs.
 - SR-PCIM may be integrated into a VI or other software
 - Implementation-specific
Alternative Routing Identifier (ARI)

- New PCI Express Capability
 - Draft ECN applicable to PCI Express 1.1 and 2.0
 - Applicable to
 - Multi-Function Devices at Upstream Ports (ARI Devices)
 - Downstream Ports (Root Ports and Switches)
 - An ARI Device interprets its directly associated ID (Routing, Requester, Completer) as having an 8-bit Function Number instead of a traditional 3-bit Function Number.
 - An ARI Device has no Device Number.
 - An ARI Device supports up to 256 Function Numbers.
 - Function 0 is required
 - Function 0 acts as head of link list of Function Numbers
 - Software walks link list to find next Function to configure – improves enumeration performance.
 - When ARI Forwarding is enabled, Downstream ports do not enforce the Device Number = 0 restriction.
- ARI Functions can be organized into Function Groups
 - ARI Functions assigned to a Function Group Number (FGN)
 - Multi-VC arbitration can use using FGN instead of FN
 - Access Control Services can use FGN instead of Function Numbers
Multi-Root (MR) IOV
Example Blade Enclosure

- Enclosure contains:
 - 4 server blades with 2 PCIe Devices each for a total of 8 Devices
 - Each server blade contains an Ethernet and a storage device (e.g. Fibre Channel)
 - Assumes point-to-point connectivity to PCIe RP
 - Enclosure contains 2 (4 in the case of a High Availability solution) “external” switches
- Each I/O device and switch port is typically provisioned to enable any I/O device to operate at full bandwidth.
MR-IOV Blade Enclosure

- Enclosure contains:
 - 4 server blades with no PCIe Devices
 - 4 MRA PCIe Devices – 2 Ethernet and 2 Storage
 - Can horizontally scale to increase aggregate bandwidth based on workload needs
 - Enclosure contains 2 MRA PCIe Switches
 - No external switches required
- I/O Device is shared
 - Can be dynamically provisioned to meet workload requirements
Goal of MR-IOV

- PCI components underneath each RP must be virtualized and logically overlaid on the MRA PCIe Switches and Devices
- The virtualized PCI components are referred to as a Virtual Hierarchy (VH). A VH has the following attributes:
 - Each VH must contain at least one PCIe Switch.
 - The PCIe Switch will be a virtualized component implemented over of a MRA Switch.
 - The PCIe Switch functionality and semantics are per the *PCI Express Base Specification*.
 - Each VH may contain any mix of PCIe Devices, MRA PCIe Devices, or PCIe to PCI / PCI-X Bridges
The MR-IOV topology must contain at least one MRA PCIe Switch.

- Multiple MRA PCIe Switches can be provisioned and interconnected in a variety of topologies – tree, fat-tree, star, mesh, etc.
- A MRA PCIe Switch typically contains two or more upstream Ports. In a single-stage or a switch at the top of the topology, each upstream Port connects to a RP which acts as the root of the VH.
Comparison of Device Types

PCIle Device
- Physical
- Data Link
- Transaction Layer
 - F0
 - F1
 - FN
- Device Specific Functionality

SR-IOV PCIle Device
- Physical
- Data Link
- Transaction Layer
 - F0
 - F1
 - FN
- VF0
- VF1
- VFN
- Device Specific Functionality

MR-IOV PCIle Device
- Physical
- MRA Data Link
- MRA Encapsulation
- Transaction Layer
 - PF0
 - PF1
 - PFN
- VF0
- VF1
- VFN
- Device Specific Functionality
MR-PCIM

- Responsible for MR configuration and event management
 - Creation VH, MR resource assignment, MR hot-plug, RESET, error handling, etc.
- Can be implemented anywhere – above a RC, sideband off switch, etc.
Address Translation Services (ATS)
Introduction to DMA Address Translation

- **Translation Agent (TA) performs:**
 - Address translation and an access right validation per Device DMA request
 - One or more accesses into the ATPT to acquire translation
 - May need to walk multiple table entries to acquire platform physical address

- **Potential Issues with DMA Translation**
 - Increased latency of accesses
 - Might need one or two accesses to find address of tree associated with a BDF
 - Might need 3 or 4 accesses to walk the tree
 - Translation caches (ATC or IOTLB) will be necessary to reduce overhead.
 - Caches may not provide good behavior if not sized correctly
 - Only two possibilities for sizing caches: too large or too small
 - “Untimely” latency may cause issues with isochronous devices
ATS to the “rescue”

- ATS attempts to mitigate the impact of DMA translation by providing ways for Devices to participate in translation cache management
 - Device can maintain their own cache of translations – an “Address Translation Cache” (ATC)
 - TA provides table-walking services to device to avoid excess bus traffic – also means that translation table format is uniform in a system
- Device manages its ATC using its intimate knowledge of future access pattern
 - Look-ahead for isochronous devices to avoid “untimely” table walk latencies.
 - High-load devices (graphics) don’t thrash ATC in TA.
 - Application specific caching in devices – ring buffer
 - Enable peer-to-peer in virtualized bus
New Protocols for ATS

- Differentiated memory address type – device will be issuing Requests that use both translated and non-translated addresses
- Translation Request – Address Translation Cache (ATC) in device requests a translation from central TA
- Translation Completion – translation is returned in response to Translation Request
- Invalidation Request – when change occurs in central table, need to inform remote ATCs
- Invalidation Completion – when ATC completes the invalidation operation, it needs to tell TA.
Specification Status and Schedule
ATS Specification Status

- Per PCI-SIG Specification Development process
 - Completed draft 0.9 60-day review on November 6, 2006
 - Workgroup received feedback from multiple member companies
 - Incorporating feedback now
- Version 1.0 December 2006
SR-IOV Specification Status

- Per PCI-SIG Specification Development process
- Draft 0.5 completed
- Draft 0.7 December 2006
- Draft 0.9 1Q2007
- Version 1.0 2Q2007
MR-IOV Specification Status

- Per PCI-SIG Specification Development process
- Draft 0.5 deliver November 2006
- Draft 0.7 1Q2007
- Draft 0.9 2Q2007
- Version 1.0 early 3Q2007
Questions