PCI Express™ Basics & Applications in Communication Systems

Akber Kazmi
PLX Technology
Agenda

- PCI Express Overview, Components & Architecture
- PCI Express Protocol Layers
- Needs of Communication Systems & PCIe
- PCI Express in Communication Systems
- Summary
PCI Express High Level Overview

- Chip/chip and fabric interconnect technology
- High speed serial, packet based
- Fully open and standardized
- Complete compatibility with PCI & PCI-X
- Cost driver: PCs/Graphics (economies of scale)
- Advanced features: QoS, Flow Control, data error detection
- Applicable to wide variety of applications
 - Servers, Storage, Communications, embedded
- Extensive industry support
PCI Express can be used in many market segments

<table>
<thead>
<tr>
<th>PCI Express Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PCI transparency</td>
<td>○ Smooth migration, SW re-use, simple validation</td>
</tr>
<tr>
<td>• TC/VC mechanism</td>
<td>○ QoS & isochrony</td>
</tr>
<tr>
<td>• High bandwidth</td>
<td>○ Peak traffic loads, support high throughput apps.</td>
</tr>
<tr>
<td>• Flow control</td>
<td>○ Buffer size flexibility, cost flexibility</td>
</tr>
<tr>
<td>• Reliable link layer</td>
<td>○ No dropped packets, simplified SW, high availability</td>
</tr>
<tr>
<td>• Robust link layer</td>
<td>○ Maintain communication for HA or diagnosis</td>
</tr>
<tr>
<td>• E-CRC</td>
<td>○ End-to-end data integrity</td>
</tr>
<tr>
<td>• Error reporting, fault isolation</td>
<td>○ System management, serviceability, availability</td>
</tr>
<tr>
<td>• Hot-plug</td>
<td>○ Optimize density, support cold spares</td>
</tr>
<tr>
<td>• Power management</td>
<td>○ Reduced power consumption and emissions</td>
</tr>
<tr>
<td>• High Speed Serial</td>
<td>○ Reduced cost, pin count, PCB layers & area</td>
</tr>
</tbody>
</table>

PCI Express can be used in many market segments
Typical PCI Express System

- **Root Complex**
 - Connects host CPU/memory complex to PCI Express hierarchy
 - Not limited to a single device
 - One or more downstream ports

- **Switch**
 - Assembly of logical PCI-to-PCI bridges
 - One upstream port directed towards root complex
 - One or more downstream ports
 - Switches can be stacked
 - Peer to peer traffic allowed

- **Bridge**
 - One upstream port directed towards root complex
 - One downstream to other devices
 - Example: PCI or PCI-X bus

- **Endpoints**
 - Native PCI Express Endpoints
 - Examples: USB, InfiniBand, E’net, FibreChannel, etc.

- **Links**
 - PCI/PCI-X
 - This Switch has 4 ports
1) The Host CPU enumerates the PCI Express system

2) Enumeration MUST flow downstream

3) Switches are enumerated as a number of P2P bridges

4) Bridges are usually enumerated as a P2P bridge (Type 1 header)

5) End points are enumerated in the same manner as PCI devices are. Type 0 header
1) Data can flow from the CPU to an end point

2) Data can flow from an End point to the CPU

3) Peer to Peer data flow is also allowed

4) The virtual P2P bridges within the Switch route the data to the appropriate port
A switch looks like a collection of P2P bridges. Bus 1 is a virtual PCI bus.

Where: B=bus, D=device, F=function

PCI System
- Host
- End Point B1, D0, F0
- End Point B1, D1, F0

Equivalent PCI Express System
- Host
- End Point B2, D0, F0
- End Point B3, D0, F0
- End Point B1, D1, F0

Bus 0
Bus 1
Bus 2
Bus 3
PCI Compatible Routing Methods

- Address Routing
 - Memory and I/O read/write
 - Optional for messaging

- ID Routing
 - Configuration read write
 - Completions
 - Optional for messaging

PCI Express only routing methods

- Implicit Routing
 - Messaging
 - packets are routed based on a sub-field in the packet header.
 - Implicitly routed messages eliminates most of the sideband signals for interrupts, error handling, and power management.
1) This device writes data with address =9M

2) 9M is not within 0 to 1M so forward upstream

3) 9M is not within 0 to 7M so forward upstream

4) This device writes data with address =5.5M

5) 5.5M is not within 6 to 7M so forward upstream

6) 5.5M is within Port 6 base limit so route downstream
ID Routing

1) Completions use the Bus, Dev, Fun of the requester device to route completion data. Secondary and subordinate bus numbers make routing easy.

2) Device 8,0,0 requests read data from device 9,0,0

3) Device 9,0,0 sends data with Requester ID of 8,0,0

Type 1 configuration accesses are converted to Type 0 accesses at the destination bus. E.g. a Type 1 access to a device with bus number 1 is converted to a Type 0 access here.

Configuration and completions accesses use Bus, Device, Function numbers.
Non-Transparent Bridge

- Provides isolation of host memory domains
- Presents the whole Sub-system as a Type0 Endpoint to Host
- Enables Inter-domain communication through address translation and Requester ID translation
- Provides Door-Bell and Scratch PAD register mechanism for host communication
Non-Transparent Bridging

HOST

PCI Express Link

Upstream Port0 (T)

Internal PCI Bus

Down Port 1
Device

NTB Port2
Type0
Type1
Idle
Link Interface
Virtual Interface

Down Port 3
Device

Down Port 7
Device

HOST/Fabric

PCI Express Link

PCI Express Link

PCI Express Link

PCI Express Link
Agenda

- PCI Express Overview, Components & Architecture
- PCI Express Protocol Layers
- Needs of Communication Systems & PCIe
- PCI Express in Communication Systems
- Summary
Protocol Stack

Device A

Transaction Layer

Data Link Layer

Physical Layer

Device B

Transaction Layer

Data Link Layer

Physical Layer

Link
Transaction Layer

- Upper layer of PCI Express protocol
- Responsible for:
 - Storing negotiated and programmed configuration information
 - Managing link flow control
 - Enforcing ordering and Quality of Service
 - Power management control/status
 - Transaction Layer Packet processing
 - Assembly, disassembly, high-level error checking
Transaction Layer - Implementation

- Packet Header for Address Routing is either 12 or 16 bytes

![Packet Header Diagram]

| Byte 0 | 8 | 0 | | Byte 4 | 8 | 0 | | Byte 8 | 8 | 0 | | Byte 12 | 8 | 0 |
|--------|---|---|---|--------|---|---|---|--------|---|---|---|--------|
| R Fmt | R Type | R TC | R | T | D | E | Attr | R | Length | | | |
| Address [63:32] | Request Specific | | | | | | | | | | | |
| Address [31:2] | | | | | | | | | | | | R |

![Packet Header Diagram]
Data Link Layer Packets

- **Data Link Layer Functions**
 - Integrity of Transaction layer packet (TLPs)
 - Link-level error detection and re-transmission of bad TLP’s
 - Tracking state of link and passing link status to upper layers
 - Conveying power management state info.
 - Initialization and updates of credit based flow control

- **Classes of DLLPs**
 - Transaction Layer Packet acknowledgements (Ack/Nak)
 - Power management
 - Flow Control (Flow Control packets)
 - Vendor specific DLLP

- **Create and terminate DLLPs for Link layer info**
DLL and TL Interaction

Transaction Layer
- Originates header, data and digest, checks flow control credits and forwards to DLL.

DLL
- Adds sequence number (0-4095) and CRC, stores transaction in Retry buffer and forwards to Phy.

Phy
- Adds STP/END and sends to Receiver of device 'B'.

CRC and sequence number are checked. Valid packets are forwarded to Transaction Layer

- 'A' checks if an ACK. TLP's with sequence number <= current one are removed from buffer. If a NAK then all unacknowledged TLP's are resent.

- A NAK is sent for bad & an ACK is sent for good TLP's.
Physical Layer Function

- Provides the physical connection between devices

- Logical Functions
 - Link training and status
 - Packet framing, Data striping/Data assembly
 - Data scramble, 8B/10B encode/decode
 - Symbol lock

- Electrical Functions
 - Receiver detect
 - Receive clock recovery
 - Bit lock, Serialization/Deserialization
 - LVDS signaling
Agenda

- PCI Express Overview, Components & Architecture
- PCI Express Protocol Layers
- Needs of Communication Systems & PCIe
- PCI Express in Communication Systems
- Summary
The Challenge

In general, too many interconnects

- Goals
 - Minimize the number of interconnects
 - Reality: there will always be multiple interconnects
 - Technically suitable and economically viable
 - Relieve the need to create proprietary technologies
 - Provide broad based industry acceptance & economies of scale
 - Interoperable multi-sourced switches, bridges & endpoints

High Speed Serial Interface with Economies of Scale
Functional Needs

- Connectivity, Bandwidth and Scalability
- Data Integrity and Reliability
- Serviceability and Availability
- Quality of Service
Connectivity, Bandwidth & Scalability

- Chip-to-chip, board-to-board, box-to-box
 - Cable spec in development
- Combining multiple lanes in wider port (x1, x4, x8, x16, x32)
 - Current spec supports 2.5GB/s per lane
 - Gen-2 in definition
- Byte striping used for multiple lanes
- No sideband signals
 - 8b/10b encoding used

![Diagram showing x1 Lane, x4 Lane, and x4 Byte Striping]
Data Integrity Support

- Data Link Layer Mechanisms (Link/Local):
 - TLPs protected using 32bit CRC
 - DLLPs protected using 16bit CRC
 - TLP error recovery through Data Link-level retry
 - Supplemental coverage through 8b/10b
 - Loss of packets detected using Sequence Numbers

- Transaction Layer Mechanisms (End-to-End):
 - Optional coverage using 32bit CRC
 - Data Poisoning capability

Unambiguous Framing with 8b/10b
Explicit error forwarding mechanism
End-to-end 32b CRC coverage

Transaction Layer Packet protected with 32b CRC
False/missed start correction
False/missed termination correction
1. Three TLPs sent from A to B
2. Packet 2 corrupted
3. B detects corruption and issues Nak DLLP
4. A resends Packet 2 and following Packet
5. B acknowledges successful receipt of Packets
End-to-End Data Integrity - ECRC

- Component internal errors are critical
 - Header errors → TLP misrouting
 - Data corruption → application and system failure
- End-to-end data integrity using ECRC
 - Protecting from system-wide errors
 - Enabling upper layers error recovery
- ECRC basics:
 - Optional Capability – additional 32bit field (part of TLP)
 - Generated by the source component – applies to all invariant TLP fields
 - Switches must pass ECRC unchanged
 - Checked in the destination component – resulting behavior is device specific
PCI Express Hot Plug

- PCI Hot Plug enables add or remove of PCI add-in device without interrupting normal system operation or requiring a power down/system reset
 - Root ports and downstream ports of switches are the hot pluggable ports in a PCI Express hierarchy
 - Elements of the Standard hot plug usage model derived from SHPC
 - Hot plug registers are integral part of the PCI Express registers
 - Do not require a separate set of memory mapped registers like PCI SHPC
 - Native hot plug solution is specific to PCI Express
 - SHPC continues to be the mechanism for parallel bus PCI implementations
Quality of Service

- Traffic Classes (TC)
 - Software-controlled method to add traffic priority
 - Part of HEADER field in a TLP

- Virtual Channels (VC)
 - Hardware method to provide separate data paths
 - Part of queue structure in switches and bridges
 - Hardware may have fewer than 8 VCs
VCs and TCs

QoS though VC’s and TC’s

- Software decides what TC a packet should use
- VC’s allow multiple independent logical data flows over the link
- TC’s are mapped into VC’s
- Multiple TC’s may be mapped into one VC
- TC/VC mappings can be configured per port
- Ingress and egress payload credits are programmable per VC, port and transaction type

![Diagram of TC/VC Mapping and Arbitration](Image)
Arbitration

TC’s are routed through switches with different priorities based on arbitration policy

- Switches use Port arbitration and VC arbitration
- TC mapping, Port and VC arbitration schemes can be configured on a per port basis – stored in PCI Express Extended Capability set.
- Arbitration schemes include:
 - Hardware Fixed
 - Weighted Round Robin (32)
 - Weighted Round Robin (64)
 - Weighted Round Robin (128)
 - Weighted Round Robin (256)
 - Timed weighted (128)
- Arbitration schemes are set up in VC Arbitration Tables and Port Arbitration Tables
Port & VC Arbitration

- **Port Arbitration:**
 - Traffic targeting same VC/Egress Port
 - Fixed Round-Robin (RR), programmable Weighted RR, programmable Time-based WRR

- **VC Arbitration:**
 - Traffic from different VC competing for the Link
 - Fixed priority, RR, programmable WRR

These structures are replicated for each egress port
Agenda

- PCI Express Overview, Components & Architecture
- PCI Express Protocol Layers
- Needs of Communication Systems & PCIe
- PCI Express in Communication Systems
- Summary
- PCI Express meets the interconnect needs of the communications industry
- Suited for Metro, Edge, Mobile and Storage network equipment
Single Host Interconnect

- PCI Express best suited as a local interconnect of single-host systems.
 - Connects the host with the I/O subsystems
 - Subsystems may be on same board, or separate I/O cards
 - Serves the needs of both control and data traffic

- Supports single board, mezzanine and bladed systems

- Communications needs of
 - Peer-to-peer transfers are supported thru switching
 - Multi-host can be supported with non-transparent bridge implementation (same as PCI)

Reliable Link layer with Flow Control
Chassis-Based System

Passive Backplane

Host / System Controller
- System level control & management
- Config, provisioning, errors & faults, stats, billing,
- Redundant w failover
- Some resource processing

Line Cards
- Line speed packet forwarding
- Control & management of lines, devices, connections, users etc.
- Protocol processing

Resource Cards

Switch Card(s)
- Security, database, storage, protocols, signalling, etc.
- Voice: codecs, speech synthesis & recognition, echo cancel,
- Content: transcoding, localization
- Standalone appliances, or common designs
PCI Express Backplanes

- Analogous situation to PCI
- Single host + I/O cards
- Dual redundant hosting requires non-transparent bridging
 - Non-transparent function may be embedded in switch ports
- Distributed processing moves to system fabric
 - Issues are scalability, system management, etc.
 - Replace a shared bus with switch fabric
 - May integrate host controller on the Switch Fabric blade
Line Card Architecture (now)

Current implementations:

- Fixed Configurations
- Chips connected in discrete daisy chain fashion
- Optimized for particular applications
- Devices must pass/process traffic destined for another device
Line Card Architecture (future)

- PCI Express Switch based architecture
 - more flexible
 - scalable
 - reusable architecture
 - fewer traces -> cheaper boards
 - no multi-drop issues
PCI Express in ATCA (3.4)

Host A

Host B

Fabric Card 2

PCI Express

Fabric Card 1

PCI Express

LC 1

LC 2

LC 3

AdvancedTCA Backplane

Line Card/Server Blades

Fabric Card 1

Fabric Card 2

To Host A

To Host B

To Fabric 1

To Fabric 2

From Fabric A

From Fabric B

CPU

RC

MEM

CPU

RC

MEM

PEx Switch

PEx Switch

PEx Switch

AdvancedTCA Backplane
I/O Mezzanine Form Factors

AdvancedTCA
AMC Mezzanine Card

PICMG Express
XMC Mezzanine Card
I/O Mezzanine Cards

- Follows I/O device migration to PCI Express
- Supports multiple I/O mezzanines
- Host CPU (root complex) could be on the baseboard or on a mezzanine card
- Processor mezzanine interconnect is electrically similar to a mini backplane

* Other brands and names may be claimed as the property of others.
Low/Mid Range Systems

Switch Fabric

PCI Express Switch (Data)

PCI Express Switch (Control)

Host/CPU

Control Module

Data Plane

Control Plane

Line Card N

PCI Express Switch

NPU

Co-Processor

Traffic Manager

Line Card 1

PCI Express Switch

NPU

Co-Processor

Traffic Manager

Port 1

Port 1

Low/Mid Range Systems

PCI Express Switch (Data)

PCI Express Switch (Control)

Host/CPU

Control Module

Data Plane

Control Plane

Line Card N

PCI Express Switch

NPU

Co-Processor

Traffic Manager

Line Card 1

PCI Express Switch

NPU

Co-Processor

Traffic Manager

Port 1

Port 1

Port 1

PCI Express Switch (Data)

PCI Express Switch (Control)

Host/CPU

Control Module

Data Plane

Control Plane
Control Plane (Switch)
Agenda

- PCI Express Overview, Components & Architecture
- PCI Express Protocol Layers
- Needs of Communication Systems & PCIe
- PCI Express in Communication Systems
- Summary
Summary

- Mature Specification (1.0a)
- High speed serial interconnect technology
- Packet based layered protocol
- Full compatibility with PCI based software
- Data integrity at link and transaction layers
- Flow control for optimum bandwidth/buffer usage
- Hot plug and power management for RAS
- Traffic Classes and Virtual Connections for quality of service (QoS) support
- Valuable features for communication systems design
- Serves control plane and low/mid range data plane
- Leverage and re-use existing PCI software
Thank you for attending the PCI-SIG Developers Conference 2004.

For more information please go to www.pcisig.com