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Abstract

This paper addresses the problem of represen-
tation learning. Using an autoencoder frame-
work, we propose and evaluate several loss
functions that can be used as an alternative to
the commonly used cross-entropy reconstruc-
tion loss. The proposed loss functions use
similarities between words in the embedding
space, and can be used to train any neural
model for text generation. We show that the
introduced loss functions amplify semantic di-
versity of reconstructed sentences, while pre-
serving the original meaning of the input. We
test the derived autoencoder-generated repre-
sentations on paraphrase detection and lan-
guage inference tasks and demonstrate per-
formance improvement compared to the tradi-
tional cross-entropy loss.

1 Introduction

Natural language processing (NLP) tasks that use
an encoder-decoder architecture tend to rely on
the cross-entropy reconstruction loss to generate
the target output. A great majority of deep learn-
ing models used at present for state-of-the-art ma-
chine translation, question answering, summariza-
tion, and dialogue generation employ this type of
architecture.

The standard cross-entropy loss penalizes the
model whenever it fails to produce the exact word
from the ground truth data used for training. How-
ever, in many NLP tasks that deal with generating
text from semantic representation, recovering the
exact word is not necessarily optimal, and often
generating a near-synonym or just a semantically
close word is nearly as good or even better from
the point of view of model performance. Consider
a situation when a decoder model generates a word
by sampling from a softmax over the vocabulary-
sized final layer to produce an output. Since cross-
entropy loss forces a model to generate the exact

words corresponding to those in the input text, the
model will be penalized when semantically close
but distinct outputs are generated. This is clearly
undesirable in many cases when the exact output
is not required.

In this paper, we introduce and experiment with
a series of distance-based reconstruction losses.
Using an auto-encoder derived representation of
sentence meaning, we test their impact on model
performance in several tasks that require building
a semantic representation, including paraphrase
detection and entailment / inference. We show that
the loss functions that take into account distribu-
tional similarity between the word embeddings of
the generated output and the ground truth tokens
lead to a substantial improvement in performance
on such tasks in an unsupervised setting.

2 Related Work

The encoder-decoder setting was first used in deep
learning by Sutskever et al. (2014) and has been
successfully adapted to a problem of representa-
tion learning since then. To date, numerous ap-
proaches based on the encoder-decoder idea have
been suggested for unsupervised feature extraction
from textual data.

Cer et al. (2018) modify the Transformer ar-
chitecture (Vaswani et al., 2017) originally sug-
gested for machine translation to produce sentence
embeddings that target transfer learning to other
NLP tasks. Arora et al. (2016) claim that sen-
tence representation as simple weighted averaging
of word vectors beats more sophisticated recur-
rent network-based models. McCann et al. (2017)
show that adding machine translation-learned vec-
tors to models designed for other NLP tasks im-
proves their performance. Nangia et al. (2017)
in RepEval-2017 report that in-sentence atten-
tion and biLSTM-based models extract represen-



tation of meaning from text reasonably well. Lo-
geswaran and Lee (2018) and Kiros et al. (2015)
change the problem of learning sentence repre-
sentations to a classification task for predicting
context sentences. Subramanian et al. (2018)
demonstrate that sharing the same sentence en-
coder across different tasks leads to performance
improvements.

All the listed works, however, propose methods
that either develop task-specific architectures, or
use large corpora of labeled data to learn embed-
dings at a sentence level. Unlike the mentioned
papers, the simple modification we propose does
not require data annotation and can be used with
any state-of-the-art neural models for text genera-
tion. Surprisingly, we have not found other work
that uses the proposed idea despite its simplicity.

3 Experiments

The objective of a classic autoencoder is to mini-
mize the difference between the given input X and
the reconstructed output X̂.

L(X, g(f(X)) (1)

where f is the encoder function and g is the de-
coder function. We propose and compare several
modifications of distance-based losses, that apply
different penalties to the model depending on the
similarity of the produced words to the targets in
the embedding space.

• Weighted similarity loss

L = −
V∑
i=1

sim(yt, yi)pi (2)

where pi is the softmax probability over vo-
cabulary size, −1 ≤ sim ≤ 1 is the similarity
between the tokens embeddings vectors, yt
and yi are the ground-truth token and the pre-
dicted token, respectively, and V is the total
vocabulary size. Intuitively, this loss encour-
ages the model to produce high probabilities
for words that are close to the target word. In
the present experiments, we use cosine as the
similarity measure.

• Weighted cross-entropy loss

L = −
V∑
i=1

sim(yt, yi) log pi (3)

Here the optimization function can be seen as
the “weighted” cross-entropy, meaning that
every ground-truth token is represented with
similarities to other words in the vocabu-
lary rather than with a traditional one-hot-
encoding scheme. The schematic illustration
of the true label encoding for the weighted
similarity and weighted cross-entropy loss
functions is shown in Figure 1 (right).

• Soft label loss

L = −
V∑
i=1

y∗i logpi (4)

This cost function is similar to the previous
one in terms of true label yi representation:
we encode ground-truth tokens as their simi-
larities across the vocabulary, but we consider
only the top N closest words in the vocab-
ulary and normalize the similarities so that
they add up to one

∑V
i=1 y

∗
i = 1. Essentially,

the loss function can be interpreted as cross-
entropy with soft targets. We vary N from
3 to 10 in our experiments. We also exclude
common English stop-words from soft target
encoding, i.e. we apply a regular cross en-
tropy loss for reconstructing of these words.
The schematic illustration is given in Figure
1 (center).

y∗i =


sim(yt,yi)∑N

j=1 sim(yt,yj)
, yi ∈ top N

0, yi 6∈ top N
(5)

We use pre-trained fastText (Bojanowski et al.,
2016) word vectors to compute similarities be-
tween words.

Note that the more recently proposed ELMo
embeddings (Peters et al., 2018), for example, can
not be used in our case, since they are context-
dependent, which means that similarities between
individual words can not be pre-computed.

To find out how the proposed loss functions af-
fect the quality of the derived representations, we
trained several autoencoder models using the reg-
ular cross-entropy, as well as the three variants of
the similarity-based reconstruction loss described
above.

In these experiments, we use the Yelp restaurant
reviews dataset (Shen et al., 2017). This dataset
was originally introduced for a sentiment classifi-
cation task and consists of 600K sentences.
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Figure 1: Schematic illustration of true-label encoding using the standard cross-entropy loss (left), soft label loss
for N = 3 (center) and weighted similarity/weighted cross-entropy loss (right). All the three examples ”good”,
”great” and ”bad” are close in the embedding space, since they appear in similar contexts. Note that all the soft
labels add up to 1, while weighted similarity labels for the third loss can vary in the range from -1 to 1.

Model MSRP SNLI SICK-E

F1 Acc Acc Acc
Cross-entropy (vanilla AE) 79.0 66.9 44.8 56.8
Soft label, N = 3 77.6 67.1 57.8 71.8
Soft label, N = 5 79.1 67.3 57.2 71.6
Soft label, N = 10 77.9 66.5 57.9 72.4
Weighted similarity 77.5 65.6 69.1 56.6
Weighted cross-entropy 79.4 68.2 57.2 70.2

Table 1: Results of transfer learning tasks performance of the proposed autoencoder models. All the models are
trained on the Yelp reviews dataset with the use of fastText pre-trained word embeddings.

Our autoencoder model is implemented using
the PyTorch deep learning framework (Paszke
et al., 2017). In our architecture, both the encoder
and the decoder are implemented as single layer
LSTMs, each with the hidden size of 256 units.
We divide our dataset into train/dev/test splits in
70/10/20 ratio. The resulting vocabulary size of
the training dataset is 9.5K tokens. For our train-
ing, we use the Adam optimizer (Kingma and Ba,
2014) with the learning rate that varies depending
on the tested loss between 0.001 and 0.0001.

We test our learned representations using the
SentEval toolkit (Conneau et al., 2017). SentE-
val is an open-source Python library for evaluating
sentence embeddings on a diverse set of language
tasks. This toolkit provides a cluster of down-
stream tasks taken from various competitions such
as SemEval as well as a set of probing tasks. In
current paper, we focus on the paraphrase detec-
tion task using the Microsoft Research Paraphrase
Corpus (MSRP) (Dolan et al., 2004), as well as the
inference/entailment tasks using the Stanford Nat-
ural Language Inference corpus (SNLI) (Bowman

et al., 2015) and the SICK-Entailment dataset from
SemEval-2014 (Marelli et al., 2014). We selected
these tasks because they seem to be likely to ben-
efit from capturing word-level semantic similarity.
Table 1 shows the scores averaged over three (3)
runs.

4 Discussion

We find that almost all of the proposed loss func-
tions outperform the vanilla autoencoder trained
with cross-entropy on all three tasks (see Table 1).
The only exception is the weighted similarity loss
function. Compared to the logarithm-based losses,
this loss applies softer penalties when the ground-
truth tokens are predicted to have lower probabili-
ties. We conclude that the non-linearity introduced
by a logarithm function contributes to more effi-
cient training.

Among the models we tested, the best scores
were achieved by the weighted cross-entropy loss
for MSRP (68.2%), the weighted similarity loss
for SNLI (69.1%) and by the soft label loss for



Configuration
Autoencoder outputs

Input sentence Reconstructed sentence

Cross-entropy you can trust this business you can trust this business
Soft label, N = 3 the taste was so good the flavor was so good
Soft label, N = 5 her tone was incredibly rude her attitude was incredibly unprofessional
Soft label, N = 10 a very nice spot for a quiet lunch a very nice slot for a tranquil lunchtime
Weighted similarity once again the staff were wonderful that so that service and great
Weighted cross-entropy great breakfast option great food place

Table 2: Sample autoencoder reconstruction outputs for the tested loss configurations.

SICK-E (72.4%). We observe that for the para-
phrase task, all the soft label losses behaved simi-
larly, while for the inference/entailment, increas-
ing the number of neighbors improved perfor-
mance.

In order to better understand how different mod-
ifications of the soft label loss affected model per-
formance on transfer tasks, we conducted some
additional experiments. Specifically, we investi-
gated the effects of (a) varying the number N of
word neighbors used to compute the loss function,
and (b) removing the normalization factor by get-
ting rid of the denominator in Eq. 5 (i.e. soft la-
bel similarities no longer sum up to 1). Note that
when N = 1, the soft label loss becomes identical
to cross-entropy. When the normalization factor is
removed, having N = V makes the soft label loss
identical to the weighted similarity loss.

We found that the normalization factor slightly
reduced the accuracy for all of the three tasks (see
Figure 2). Interestingly, we have not established
a universal tendency for the optimal choice of N :
for the language inference tasks, the best accuracy
was achieved at N close to 10, while for the para-
phrasing task the suitable choice for N was in the
range of 3-5.

The performance figures obtained for each loss
are well illustrated by the quality of the recon-
structed examples in Table 2. The standard cross-
entropy, as expected, aims at the accurate word-
by-word reconstruction of the input sentence. The
autoencoder with our least successful weigthed
similarity loss function manages to learn most fre-
quent corpus-specific words (e.g. “great service”),
but the overall meaning is not conveyed well. he
rest of the models succeed in reconstructing syn-
onyms at the word-level. This results in a slightly
different expression style (e.g. “her tone was in-
credibly rude” becomes “her attitude was incred-

ibly unprofessional”), but the overall meaning is
reconstructed correctly.

Obviously, the quality of the generated repre-
sentations depends to a large extent on the selec-
tion of pre-trained word embeddings. The related
drawback that we observe in our choice of the fast-
Text vectors is that the target ground-truth tokens
can be replaced with word inflections as well as
with antonyms, which in certain cases can change
the meaning of the sentence to the opposite.

For a subset of configurations, we conducted
exploratory testing on additional tasks, including
different subsets of STS and SICK-Relatedness
data. For nearly all tasks tested, we recorded better
performance compared to cross-entropy, with the
minimum relative gain being 1%. The only per-
formance reduction was in plagiarism detection,
which may be expected to favor exact replication.

Although the scores we obtained are below the
state-of-the-art for the considered tasks, our goal
was to demonstrate that in a traditional encoder-
decoder setting, which is extensively used for a
number of NLP problems, the proposed loss func-
tions beat the conventional cross-entropy. The ma-
jor advantage of our proposal is that it is very sim-
ple and highly generalizable, i.e. without a so-
phisticated model architecture, our model is able
to produce diversified outputs and can be easily
integrated in any existing encoder-decoder archi-
tectures.

5 Conclusion

In this paper, we introduced the loss functions
that leverage word-level distributional similarity
between the generated output and the ground truth.
Compared to the representations learned by a
vanilla autoencoder, the proposed reconstruction
loss variants show substantially improved perfor-
mance on several semantic representation tasks.



Figure 2: The effect of the soft label loss modifications on task performance. N is the number of closest words
neighbors used to compute the loss function.

Further, relative to the conventional cross-entropy,
the tested loss variants produce more diverse out-
put while preserving the underlying semantics.

We focused on the autoencoder architecture
which requires no pre-annotated data to generate
the representations. The major benefit of our pro-
posal is that the proposed loss functions can be
plugged directly into any NLP model that gener-
ates text word-by-word and that may benefit from
more diverse output. The potential applications of
our proposal therefore include any of the common
NLP problems where language diversity is desir-
able, including conversational agents, paraphrase
generation and text summarization.

The next step for this work is to evaluate the per-
formance of the proposed loss functions in state-
of-the-art models for the NLP tasks that lever-
age sentence-level semantic representation, such
as the ones we explored in the present study. Fur-
ther experiments with the proposed loss functions
are also needed to evaluate the effects of different
word embedding models on the quality of derived
representations.
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