Probability

\[x_i = \text{result of } i\text{-th coin flip} \quad x_i = \{H, T\} \]

\[P(x_1 = x_2 = x_3 = x_4) = \boxed{0.125} \quad P_i(H) = \frac{1}{2} \quad A_i \]

\[\Rightarrow \frac{1}{16} + \frac{1}{16} = \frac{1}{8} \]

\[P(\{x_1 x_2 x_3 x_4\} \text{ contains } 3 \text{ } H) = \boxed{1} \]
Probability

\[P(A) = p \Rightarrow P(\neg A) = 1 - p \]

Independence:

\[X \perp Y : p(X) p(Y) = p(X, Y) \]

\[\text{marginals} \]
\[\text{joint probability} \]
DEPENDENCE

\[P(X_1 = H) = \frac{1}{2} \]

\[H: P(X_2 = H \mid X_1 = H) = 0.9 \]

\[T: P(X_2 = T \mid X_1 = T) = 0.8 \]

\[P(X_2 = H) = \square \]
Lessons

\[P(Y) = \sum_i P(Y \mid X=i) \cdot P(X=i) \]

Total probability

\[P(\neg X \mid Y) = 1 - P(X \mid Y) \]

\[P(X \mid \neg Y) = 1 - P(X \mid Y) \]
Quit

\[\Pr(D_1) \]

\[\Pr(D_1 = \text{sunny}) = 0.9 \]

\[\Pr(D_2 = \text{sunny} | D_1 = \text{sunny}) = 0.8 \]

\[\Pr(D_2 = \text{rainy} | D_1 = \text{sunny}) = \Box \]
Quit

\[P(D_1) \]
\[P(D_1 = \text{sunny}) = 0.9 \]
\[P(D_2 = \text{sunny} \mid D_1 = \text{sunny}) = 0.8 \]
\[P(D_2 = \text{rainy} \mid D_1 = \text{sunny}) = 0.2 \]
\[P(D_2 = \text{sunny} \mid D_1 = \text{rainy}) = 0.6 \]
\[P(D_2 = \text{rainy} \mid D_1 = \text{rainy}) = \]
Quit

\[P(D_1) \quad P(D_1 = \text{sunny}) = 0.9 \]
\[P(D_2 = \text{sunny} \mid D_1 = \text{sunny}) = 0.8 \]
\[P(D_2 = \text{rainy} \mid D_1 = \text{sunny}) = 0.2 \]
\[P(D_2 = \text{sunny} \mid D_1 = \text{rainy}) = 0.6 \]
\[P(D_2 = \text{rainy} \mid D_1 = \text{rainy}) = 0.4 \]

\[P(D_2 = \text{sunny}) = _ _ _ _ _ \]
\[
\begin{align*}
P(D_1) & \quad P(D_1=\text{sunny}) = 0.9 \\
P(D_2=\text{sunny} \mid D_1=\text{sunny}) & = 0.8 \\
\phantom{P(D_2=\text{sunny} \mid D_1=\text{sunny})} & = \boxed{0.2} \\
P(D_2=\text{rainy} \mid D_1=\text{sunny}) & = 0.6 \\
P(D_2=\text{rainy} \mid D_1=\text{rainy}) & = \boxed{0.4} \\
\end{align*}
\]

\[
P(D_2=\text{sunny}) = \boxed{} \quad P(D_2=\text{sunny}) = \boxed{}
\]
Cancer

\[P(C1) = 0.01 \]
\[P(C1) = \square \]
Cancer

\[P(C) = 0.01 \quad P(+|C) = 0.9 \]
\[P(-|C) = 0.99 \]

\[P(-|\neg C) = [\text{BLANK}] \]
Cancer

\[P(C) = 0.01 \quad P(+|C) = 0.9 \]
\[P(\neg C) = 0.99 \quad P(-|C) = 0.1 \]
\[P(+|\neg C) = 0.2 \]
\[P(-|\neg C) = 0.8 \]

\[P(C|+) = \]

Joint probabilities

\[P(+, C) = \]
\[P(-, C) = \]
\[P(+, \neg C) = \]
\[P(-, \neg C) = \]
Cancer

\[P(C) = 0.01 \quad P(+ | C) = 0.9 \]
\[P(- | C) = 0.1 \]
\[P(+ | \neg C) = 0.2 \]
\[P(- | \neg C) = 0.8 \]

Joint probabilities

\[P(+, C) = 0.009 \]
\[P(+, \neg C) = 0.001 \]
\[P(-, C) = 0.188 \]
\[P(-, \neg C) = 0.792 \]
Cancer

\[P(C) = 0.01 \quad P(\neg C) = 0.9 \]
\[P(+ | C) = 0.93 \quad P(\neg + | C) = 0.1 \]
\[P(\neg + | \neg C) = 0.2 \quad P(+ | \neg C) = 0.8 \]

\[P(C | +) = \blacksquare \]

Joint probabilities

\[P(+, C) = 0.009 \]
\[P(-, C) = 0.001 \]
\[P(+, \neg C) = 0.188 \]
\[P(-, \neg C) = 0.792 \]
Bayes Rule

Diagram:

- **A**: not observable
- **B**: observable

Bayesian Network

Diagnosis Reasoning:

- $P(A)$
- $P(B|A)$
- $P(B|\neg A)$
- $P(A|B)$
- $P(A|\neg B)$
Bayes Rule

\[P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \]

\[P(B) = \sum_{A} P(B|A=a) \cdot P(A=a) \]

Total Probability

\[P(C(+)) = \frac{P(+|C) \cdot P(C)}{P(+)} = \frac{0.9 \cdot 0.01}{0.9 \cdot 0.01 + 0.2 \cdot 0.99} \]