Reinforcement Learning
10/25/2010

A subset of slides from Dan Klein – UC Berkeley
Many slides over the course adapted from either Stuart Russell or Andrew Moore
Reinforcement Learning

- Reinforcement learning:
 - Still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
 - Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Passive Learning

- **Simplified task**
 - You don’t know the transitions $T(s,a,s’) $
 - You don’t know the rewards $R(s,a,s’) $
 - You are given a policy $\pi(s)$
 - **Goal:** learn the state values
 - ... what policy evaluation did

- **In this case:**
 - Learner “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - We’ll get to the active case soon
 - This is NOT offline planning! You actually take actions in the world and see what happens...
Recap: Model-Based Policy Evaluation

- Simplified Bellman updates to calculate V for a fixed policy:
 - New V is expected one-step-look-ahead using current V
 - Unfortunately, need T and R

\[
V_0^\pi(s) = 0
\]

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')]\
\]
Model-Based Learning

- **Idea:**
 - Learn the model empirically through experience
 - Solve for values as if the learned model were correct

- **Simple empirical model learning**
 - Count outcomes for each \(s,a \)
 - Normalize to give estimate of \(T(s,a,s') \)
 - Discover \(R(s,a,s') \) when we experience \((s,a,s') \)

- **Solving the MDP with the learned model**
 - Iterative policy evaluation, for example

\[
V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_i^\pi (s') \right]
\]
Example: Model-Based Learning

- Episodes:
 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,2) up -1
 - (4,2) exit -100
 - (3,3) right -1
 - (3,3) right -1
 - (4,3) exit +100
 - (done)

- Transition Probabilities:
 - $T(<3,3>, \text{right}, <4,3>) = \frac{1}{3}$
 - $T(<2,3>, \text{right}, <3,3>) = \frac{2}{2}$
Model-Free Learning

- Want to compute an expectation weighted by $P(x)$:
 \[E[f(x)] = \sum_x P(x) f(x) \]

- Model-based: estimate $P(x)$ from samples, compute expectation
 \[x_i \sim P(x) \]
 \[\hat{P}(x) = \text{count}(x)/k \]
 \[E[f(x)] \approx \sum_x \hat{P}(x) f(x) \]

- Model-free: estimate expectation directly from samples
 \[x_i \sim P(x) \]
 \[E[f(x)] \approx \frac{1}{k} \sum_i f(x_i) \]

- Why does this work? Because samples appear with the right frequencies!
Example: Direct Estimation

- **Episodes:**

 - (1,1) up -1
 - (1,2) up -1
 - (1,2) up -1
 - (1,3) right -1
 - (2,3) right -1
 - (3,3) right -1
 - (3,3) right -1
 - (3,2) up -1
 - (3,3) right -1
 - (4,3) exit +100

-

- $\gamma = 1, R = -1$

- $V(2,3) \sim (96 + -103) / 2 = -3.5$

- $V(3,3) \sim (99 + 97 + -102) / 3 = 31.3$
Sample-Based Policy Evaluation?

\[V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^{\pi}(s')] \]

- Who needs T and R? Approximate the expectation with samples (drawn from T!)

\[
\begin{align*}
\text{sample}_1 &= R(s, \pi(s), s'_1) + \gamma V_i^{\pi}(s'_1) \\
\text{sample}_2 &= R(s, \pi(s), s'_2) + \gamma V_i^{\pi}(s'_2) \\
&\vdots \\
\text{sample}_k &= R(s, \pi(s), s'_k) + \gamma V_i^{\pi}(s'_k)
\end{align*}
\]

\[V_i^{\pi}(s) \leftarrow \frac{1}{k} \sum_{i} \text{sample}_i \]

Almost! But we only actually make progress when we move to \(i+1 \).
Temporal-Difference Learning

- **Big idea:** learn from every experience!
 - Update $V(s)$ each time we experience (s,a,s',r)
 - Likely s' will contribute updates more often

- **Temporal difference learning**
 - Policy still fixed!
 - Move values toward value of whatever successor occurs: running average!

Sample of $V(s)$:

$$sample = R(s, \pi(s), s') + \gamma V^\pi(s')$$

Update to $V(s)$:

$$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$$

Same update:

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$$
Exponential Moving Average

- Exponential moving average
 - Makes recent samples more important

\[\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots} \]

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

\[\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \]

- Decreasing learning rate can give converging averages
Example: TD Policy Evaluation

\[V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right] \]

(1,1) up -1 (1,1) up -1
(1,2) up -1 (1,2) up -1
(1,3) right -1
(2,3) right -1
(3,3) right -1
(3,2) up -1
(3,2) up -1
(4,2) exit -100
(3,3) right -1
(done)
(4,3) exit +100
(done)

Take $\gamma = 1$, $\alpha = 0.5$
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[\pi(s) = \arg \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Idea: learn Q-values directly.
- Makes action selection model-free too!
Active Learning

- **Full reinforcement learning**
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You can choose any actions you like
 - Goal: learn the optimal policy
 - … what value iteration did!

- **In this case:**
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens…
Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with $V_0^*(s) = 0$, which we know is right (why?)
 - Given V_i^*, calculate the values for all states for depth $i+1$:
 \[
 V_{i+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]
 \]

- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$, which we know is right (why?)
 - Given Q_i^*, calculate the q-values for all q-states for depth $i+1$:
 \[
 Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]
 \]
Q-Learning

- Q-Learning: sample-based Q-value iteration
- Learn $Q^*(s, a)$ values
 - Receive a sample (s, a, s', r)
 - Consider your old estimate: $Q(s, a)$
 - Consider your new sample estimate:
 \[
 Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]
 \]
 \[
 \text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a')
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \text{[sample]}
 \]
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - If you explore enough
 - If you make the learning rate small enough
 - … but not decrease it too quickly!
 - Basically doesn’t matter how you select actions (!)

- Neat property: off-policy learning
 - learn optimal policy without following it (some caveats)
Exploration / Exploitation

- Several schemes for forcing exploration
 - Simplest: random actions (ϵ greedy)
 - Every time step, flip a coin
 - With probability ϵ, act randomly
 - With probability $1-\epsilon$, act according to current policy

- Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions
Exploration Functions

- **When to explore**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established

- **Exploration function**
 - Takes a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$ (exact form not important)

\[
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \\
Q_{i+1}(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q_i(s', a'), N(s', a'))
\]
Q-Learning

- Q-learning produces tables of q-values:

<table>
<thead>
<tr>
<th></th>
<th>0.59</th>
<th>0.66</th>
<th>0.64</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.58</td>
<td>0.70</td>
<td>0.60</td>
<td>0.78</td>
<td>0.88</td>
</tr>
<tr>
<td>0.54</td>
<td>0.66</td>
<td>0.58</td>
<td>-0.51</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.61</td>
<td></td>
<td>-0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td>0.52</td>
<td>0.42</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>0.49</td>
<td></td>
<td>0.15</td>
<td></td>
<td>-0.89</td>
</tr>
<tr>
<td>0.54</td>
<td>0.40</td>
<td>0.31</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>0.43</td>
<td>0.33</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>0.47</td>
<td>0.42</td>
<td>0.27</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

Q-VALUES AFTER 1000 EPISODES
The Story So Far: MDPs and RL

<table>
<thead>
<tr>
<th>Things we know how to do:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ We can solve small MDPs exactly, offline</td>
</tr>
<tr>
<td>▪ We can estimate values $V^\pi(s)$ directly for a fixed policy π.</td>
</tr>
<tr>
<td>▪ We can estimate $Q^*(s,a)$ for the optimal policy while executing an exploration policy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Techniques:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Value and policy Iteration</td>
</tr>
<tr>
<td>▪ Temporal difference learning</td>
</tr>
<tr>
<td>▪ Q-learning</td>
</tr>
<tr>
<td>▪ Exploratory action selection</td>
</tr>
</tbody>
</table>
Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

- Let’s say we discover through experience that this state is bad:

- In naïve q learning, we know nothing about this state or its q states:

- Or even this one!
Feature-Based Representations

- Solution: describe a state using a vector of features
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Feature Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but be very different in value!
Function Approximation

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear q-functions:**
 \[
 Q(s, a) \leftarrow Q(s, a) + \alpha [\text{error}]
 \]
 \[
 w_i \leftarrow w_i + \alpha [\text{error}] f_i(s, a)
 \]

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state’s features

- **Formal justification:** online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{\text{DOT}}(s, a) - 1.0 f_{\text{GST}}(s, a) \]

\[f_{\text{DOT}}(s, \text{NORTH}) = 0.5 \]

\[f_{\text{GST}}(s, \text{NORTH}) = 1.0 \]

\[Q(s, a) = +1 \]

\[R(s, a, s') = -500 \]

\[\text{error} = -501 \]

\[w_{\text{DOT}} \leftarrow 4.0 + \alpha [-501] 0.5 \]

\[w_{\text{GST}} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{\text{DOT}}(s, a) - 3.0 f_{\text{GST}}(s, a) \]
Linear regression

Given examples \((x_i, y_i)_{i=1}^n\)

Predict \(y_{n+1}\) given a new point \(x_{n+1}\)
Linear regression

\[\hat{y}_{n+1} = w_0 + w_1 x_{n+1} \]

Prediction

\[\hat{y}_i = w_0 + w_1 x_{i,1} + w_2 x_{i,2} \]
Ordinary Least Squares (OLS)

\[\sum_i \left(\sum_k f_k(x_i)w_k - y_i \right)^2 \]
Minimizing Error

\[E(w) = \frac{1}{2} \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right)^2 \]

\[\frac{\partial E}{\partial w_m} = \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i) \]

\[E \leftarrow E + \alpha \sum_i \left(\sum_k f_k(x_i)w_k - y_i \right) f_m(x_i) \]

Value update explained:

\[w_i \leftarrow w_i + \alpha [\text{error}] f_i(s, a) \]
Overfitting

Degree 15 polynomial
Policy Search
Policy Search

- Problem: often the feature-based policies that work well aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards

- This is the idea behind policy search, such as what controlled the upside-down helicopter
Policy Search

- **Simplest policy search:**
 - Start with an initial linear value function or q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- **Problems:**
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
Policy Search*

- Advanced policy search:
 - Write a stochastic (soft) policy:
 \[\pi_w(s) \propto e^{\sum_i w_i f_i(s, a)} \]
 - Turns out you can efficiently approximate the derivative of the returns with respect to the parameters \(w \) (details in the book, but you don’t have to know them)
 - Take uphill steps, recalculate derivatives, etc.
Take a Deep Breath…

- We’re done with search and planning!

- Next, we’ll look at how to reason with probabilities
 - Diagnosis
 - Tracking objects
 - Speech recognition
 - Robot mapping
 - … lots more!

- Last part of course: machine learning